Способ концентрических сфер для построения линии пересечения двух поверхностей

Способ концентрических сфер

ВЗАИМНОЕ ПЕРЕСЕЧЕНИЕ ПОВЕРХНОСТЕЙ ВТОРОГО ПОРЯДКА. ОСОБЫЕ СЛУЧАИ ПЕРЕСЕЧЕНИЯ.

СПОСОБ ВСПОМОГАТЕЛЬНЫХ ЭКСЦЕНТРИЧЕСКИХ СФЕР.

Способ концентрических сфер.

Рассмотрим построение линии пересечения двух поверхностей, когда в качестве поверхности-посредника используется сфера. При этом возможны два случая применения сфер:

1) вспомогательные сферы могут быть проведены из одного общего для всех сфер центра. В этом случае говорят о способе концентрических сфер,

2) вспомогательные сферы проводятся из разных центров. Этот способ называют способом эксцентрических сфер.

Предварительно скажем несколько слов о пересечении соосных поверхностей, т.е. поверхностей, имеющих общую ось вращения.

Пусть заданы две образующие линии (два главных меридиана) -прямая l и дуга окружности m (рисунок 12-1). При вращении их вокруг оси i будут описаны соответственно цилиндрическая и торовая поверхности. Каждая точка заданных линий при вращении вокруг оси i описывает в пространстве окружность, плоскость которой перпендикулярна оси вращения.

Полученные поверхности пересекаются, причем линий пересечения будет столько, сколько точек пересечения имеют сами образующие линии (меридианы). Поскольку в нашем случае они пересекаются в двух точках, будет и две линии пересечения поверхностей, которые представляют собой окружности (параллели).

В частном случае одной из соосных поверхностей может быть сфера, если центр дуги окружности m находится на оси вращения i.

Таким образом, если центр сферы находится на оси некоторой поверхности вращения, то эта поверхность пересекается со сферой по окружностям. Это свойство и положено в основу способа вспомогательных сфер.

Способ концентрических сфер следует применять в случаях, когда соблюдаются следующие три условия:

· пересекаются поверхности вращения или поверхности, содержащие семейства окружностей, по которым их могут пересекать концентрические сферы;

· оси поверхностей вращения пересекаются;

· поверхности имеют общую плоскость симметрии, параллельную одной из плоскостей проекций. Если же она не параллельна ни одной из плоскостей проекций, то необходимо произвести преобразование чертежа для достижения необходимых условий решения.

Пример 1. Построить линию пересечения конуса вращения с цилиндром вращения (рисунок 12-2).

Сначала определим некоторые опорные точки. Так как поверхности имеют общую плоскость симметрии, параллельную фронтальной плоскости проекций, то пересечение их контурных образующих в точках А и В определяет высшую и низшую точки линии пересечения.

Центр сфер 0 выбирают в месте пересечения осей цилиндра и конуса, т.к. только в этом случае сферы будут соосны с обеими поверхностями.

Определим радиус минимальной Rmin и максимальной Rmax сфер, которые будем использовать при решении задачи. Rmax определяется расстоянием от точки 0 до самой удаленной опорной точки.

Для определения Rmin необходимо из центра 0 опустить перпендикуляры на очерковые образующие поверхностей из центра 0 опустить перпендикуляры на очерковые образующие поверхностей. Больший из них принимается в качестве Rmin, т.к. сфера такого радиуса будет касаться одной и пересекать вторую поверхность, что дает возможность найти общие для обеих поверхностей точки — точки линии пересечения. При радиусе сферы меньшем Rmin она не будет иметь общих точек с одной из поверхностей; построения теряют смысл.

Читайте также:  Способы продления срока службы древесины

Для построения случайных точек проводим сферы радиуса Rmin

· каждая поверхность содержит семейство окружностей, по которым её могут пересекать эксцентрические сферы, общие для обеих поверхностей.

Пример 2. Построить линию пересечения конуса вращения со сферой (рисунок12-3).

Плоскостью симметрии данных поверхностей является фронтальная плоскость, поэтому можно применить способ вспомогательных сфер. Каких?

Задачу можно решить как способом концентрических сфер, так и эксцентрических. Решим её вторым способом.

Центр сфер можно брать в любой точке оси конуса вращения. На рисунке 12-3 проведены три сферы радиусов RI, R2, R3. Каждая из этих сфер пересекается с каждой из данных поверхностей по окружности, точки пересечения которых будут точками линии пересечения.

На виде сверху точки находим с помощью параллелей конуса h¹,h²,h³.

Пример 2. Построить линию пересечения конуса вращения с тором (рисунок 12-4).

Эту задачу можно решить только способом эксцентрических сфер.

Обе поверхности имеют общую плоскость симметрии, параллельную фронтальной плоскости проекций, в которой расположены ось конуса и линия центров тора.

Как и во всех задачах на пересечение поверхностей, вначале определяем опорные точки. Самая верхняя и правая — т. А, расположенная на пересечении контурных линий. Чтобы найти нижнюю и левую т. В (точку касания контурных линий конуса и тора), необходимо из т. О опустить перпендикуляр на контурную образующую конуса; их пересечение определяет т.В.

Для построения дополнительных точек выделим одну окружность –m принадлежащую поверхности тора.

Центры всех сфер, которые будут пересекаться с тором по этой окружности, будут лежать на прямой n1 данной окружности C1 перпендикулярно к её плоскости. Эта прямая пересечёт ось конуса (т.к. они лежат в одной плоскости) в т. 01. Эта точка будет центром сферы, которая пересечёт поверхность конуса по окружности h1. Окружности m1 и h1 пересекаются в точках 1 и 2, которые будут принадлежать линии пересечения.

Для нахождения дополнительных точек нужно взять новую окружность на поверхности тора и все действия повторить.

На виде сверху точки линии пересечения находят при помощи параллелей конуса h.

Источник

Способ концентрических сфер для построения линии пересечения двух поверхностей

При определении линии пересечения двух поверхностей вращения, при их особом взаимном расположении, не всегда рационально применять вспомогательные секущие плоскости. В некоторых случаях применяют метод вспомогательных секущих сфер – концентрических или эксцентрических.

Читайте также:  Способ применения этого карандаша

Концентрические сферические посредники применяются при определении линии пересечения двух поверхностей вращения с пересекающимися осями.

Каждая из этих поверхностей имеет семейство окружностей, являющихся линиями сечения их концентрическими сферами. Применению метода концентрических сфер должно предшествовать такое преобразование чертежа, в результате которого оси обеих поверхностей должны быть расположены параллельно одной и той же плоскости проекций (рис.151) или одна из осей становиться проецирующей прямой, а вторая — линией уровня (рис.152).

Рисунок 1 51. Пересечение поверхностей вращения, оси которых параллельны
фронтальной плоскости проекций.

а) модель б) эпюр

Оси поверхностей G и Q параллельны фронтальной плоскости проекций и пересекаются в точки А (рис.151). Эта точка принимается за центр всех вспомогательных концентрических сфер. Каждая из концентрических сфер пересекает поверхности по окружностям — параллелям (а, b, c, d, n), фронтальные проекции которых являются прямыми линиями (а2, b2, c2, d2, n2). Проекции точек 12, 22, 32, 42, 52 и 62 пересечения проекций параллелей принадлежат проекции искомой линии пересечения поверхностей. Пересечение главных фронтальных меридианов поверхностей определяют положение верхней и нижней точек (7 и 8) линии.

Для точного построения линии пересечения поверхностей необходимо найти точки 9 и 10, которые определяют границу зоны видимости линии пересечения поверхностей на горизонтальной проекции. Для этой цели использовалась вспомогательная секущая плоскость b , которая пересекает поверхность Q по линии m, а поверхность G по образующим, горизонтальные проекции которых пересекаясь определяют положение искомых точек.

Соединив найденные точки 1. 10 с учетом видимости получим линию пересечения поверхностей.

Рисунок 152. Пересечение поверхностей вращения,
ось одной — горизонтально проецирующая
прямая, а второй — горизонталь

Вторым примером использования в качестве вспомогательных поверхностей посредников концентрических сфер рассмотрим при определении линии пересечения поверхностей предложенных на рисунке 152. Оси поверхностей вращения G и Q пересекаются в точки А , при этом ось поверхности Q — горизонтально проецирующая прямая, а ось поверхности G — горизонталь. Точка А принимается за центр всех вспомогательных концентрических сфер.

Точки 1 и 2 линии пересечения построены с помощью сферы радиуса R. Эта сфера пересекает поверхность Q по окружности а, а поверхность G по окружности b , которая показана только на горизонтальной проекции. Пересечение горизонтальных проекций окружностей а1 и b 1 определяют проекции 11 и 21 точек линии пересечения. Их фронтальные проекции 12 и 22 построены на а2 пересечении с линиями связи.

Для нахождения точек 5 и 6 определяющих границу зоны видимости на горизонтальной проекции, использовалась вспомогательная секущая плоскость b , которая пересекает поверхность Q по окружность n, а коническую поверхность G по треугольнику, определяющему ее очерк на горизонтальной проекции.

Точки 7 и 8 находятся на границе зоны видимости фронтальной проекции, для их нахождения используется вспомогательная секущая плоскость g .

Соединив найденные точки 1. 8 с учетом видимости получим линию пересечения поверхностей G и Q.

Эксцентрические сферические посредники применяются при определении точек линии пересечения поверхностей вращения с поверхностью несущей на себе непрерывное множество окружностей. Обе поверхности должны иметь общую плоскость симметрии. Вспомогательные эксцентрические сферы пересекаются с данными поверхностями по окружностям.

Рисунок 1 53. Пересечение конуса и сферы

а) модель б) эпюр

Определения линии пересечения конуса и сферы применение эксцентричных сфер, как поверхностей — посредников. Центры сфер — точки расположены на оси конуса. Сфера пересекает конус и сферу по окружностям , которые пересекаются в двух точках, принадлежащих искомой линии пересечения (рис.153а).

Верхняя и нижняя точки линии пересечения найдены с помощью вспомогательной секущей плоскости — плоскости главного фронтального меридиана, пересекающая конус и сферу по треугольнику и окружности, являющимися очерками поверхностей на фронтальной плоскости проекций.

Точки, определяющие границу зоны видимости линии пересечения на горизонтальной плоскости проекций, найдены с помощью вспомогательной секущей плоскости горизонтальной плоскости уровня, пересекающей сферу по экватору — окружности являющейся очерком шара на горизонтальной проекции, а конус по окружности — параллели.

Точки, найденные с помощью вспомогательных поверхностей посредников, определяют линию пересечения конуса и шара.

Рассмотрим, на примере определения линии пересечения конуса Q и сферы G (рис.153б), применение эксцентричных сфер, как поверхностей — посредников. Центры сфер — точки А 1 , А 2 и А 3 расположены на оси конуса. Сфера радиуса R 1 с центром в точке А 1 пересекает конус и сферу по окружностям а и в, которые пересекаются в точках 1 и 2, принадлежащих искомой линии пересечения. С помощью сферы R 2 с центром А 2 и сферы R 3 с центром А 3 определено положение точек 3, 4 и 5,6 соответственно. Точки 7 и 8 найдены с помощью вспомогательной секущей плоскости a (плоскости фронтального меридиана), пересекающей конус и сферу по главным фронтальным меридианам k и l . Точки 9 и 10, определяющие границу зоны видимости линии пересечения на горизонтальной плоскости проекций, найдены с помощью вспомогательной секущей плоскости b (горизонтальной плоскости уровня), пересекающей сферу G по экватору s, а конус Q по окружности p. Точки 1. 10, построенные с помощью вспомогательных поверхностей посредников, определяют линию пересечения конуса и шара.

Источник

Читайте также:  Способы проведения статистического наблюдения опрос
Оцените статью
Разные способы