Метод коэффициентов при решении квадратных уравнений
Дата публикации: 19.03.2018 2018-03-19
Статья просмотрена: 8531 раз
Библиографическое описание:
Прямостанов, С. М. Метод коэффициентов при решении квадратных уравнений / С. М. Прямостанов, Л. В. Лысогорова. — Текст : непосредственный // Юный ученый. — 2018. — № 1.1 (15.1). — С. 66-67. — URL: https://moluch.ru/young/archive/15/1165/ (дата обращения: 19.11.2021).
В статье описываются нестандартные способы решения квадратных уравнений.
Ключевые слова:уравнения, квадратные уравнения, способы решения квадратных уравнений.
В школьном курсе математики изучается решение полных квадратных уравнений с помощью дискриминанта, теоремы обратной теореме Виета, выделения полного квадрата. Однако, имеются и другие приемы решения квадратных уравнений, которые позволяют очень быстро и рационально решать квадратные уравнения:
1. Прием переброски старшего коэффициента
Коэффициент а умножается на с, таким образом «перебрасывается» к свободному члену. Получается следующее уравнение у 2 +ру+к=0, тогда
х1=, х2=.
Пример:2х 2 -9х-5=0
У 2 -9у-10=0. у1=10, у2=-1, тогда х1==5, х2=-0,5.
Данный метод удобен в том случае, когда после переброски корни находятся по т. Виета, или (а+в+с=0; а-в+с=0).
Пример: . При переброске старшего коэффициента получим уравнение . По теореме, обратной т.Виета, получим корни у1=-3, у2=-, тогда х1==, х2=.
Пример: 21х 2 -3940х+3919=0. Так как 21-3940+3919=0 то, х1=1, х2=.
Если а-в+с=0, то х1=-1, х2=.
Пример: х 2 +1357х+1356=0. Так как 1-1357+1356=0, то х1=-1, х2=-1356.
3. Метод решения квадратных уравнений вида: ах 2 ± (а 2 +1)х ± а=0.
В уравнениях вида ах 2 +(а 2 +1)х+а=0 корни х1=- а, х2=-.
Пример: 25х 2 +626х+25=0, х1=- 25, х2= – .
В уравнениях вида ах 2 — (а 2 +1)х+а=0 корни х1= а, х2=.
Пример: 13х 2 — 170х+13=0, х1=13, х2= .
В уравнениях вида ах 2 +(а 2 +1)х- а=0 корни х1=- а, х2=.
Пример: 25х 2 +626х – 25=0, х1=- 25, х2= .
В уравнениях вида ах 2 — (а 2 +1)х- а=0 корни х1= а, х2=.
Пример: 13х 2 — 170х-13=0, х1=13, х2= .
В уравнениях вида ах 2 -(а 2 +1)х+а=0 можно перебросить старший коэффициент, получим уравнение вида у 2 -(а 2 +1)у+а 2 =0. Сумма коэффициентов 1-(а 2 +1)+а 2 =0, следовательно у1=1, у2=а 2 , тогда х1=, х2=а.
Предлагаем решить следующие уравнения, используя рассмотренные приемы:
Решить квадратные уравнения с большими коэффициентами
1978х 2 – 1984х + 6=0
4х 2 + 11х + 7 = 0
319х 2 + 1988х +1669=0
1999х 2 + 2000х+1=0
839х 2 – 448х -391=0
345х 2 – 137х – 208=0
Решите уравнение
а) 20092008х 2 -20092009х+1 (Олимпиада 2009 г. для поступающих в СМАЛ)
б) x(x+ 1) = 2014·2015 (турнир Ломоносова)
Найди наиболее рациональным способом корни уравнения:
37х 2 +1370х – 37=0
38х 2 +3365 – 38=0
69х 2 — 4762х+69=0
69х 2 +4762х – 69=0
69х 2 +4762х – 69=0
Каждое из этих уравнений может быть решено без использования формулы корней квадратного уравнения; без громоздких вычислений; каждое решение уравнения почти устное.
Умение быстро и рационально решать квадратные уравнения необходимо для решения более сложных уравнений, например, дробно-рациональных уравнений, уравнений высших степеней, биквадратных уравнений, а в старшей школе тригонометрических, показательных и логарифмических уравнений.
Галицкий М.Л., Гольдман М., Звавич Л.И. Сборник задач по алгебре для 8-9 классов: учебное пособие для учащихся школ и классов с углубленным изучением математики:4-е изд.-М.: Просвещение, 1997.
Макарычев Ю.Н., Миндюк Н.Г. Алгебра. Учебник для 8 класса. М., Просвещение, 2001.
Штейнгауз В.Г. Математический калейдоскоп. – М.: Бюро «Квантум», 2005.
Энциклопедический словарь юного математика. – М.: Педагогика, 1985.
Лысогорова Л.В. Педагогические условия развития математических способностей младших школьников //Сибирский педагогический журнал. 2007. № 9. С. 228-233.
Зубова С.П., Лысогорова Л.В. Математические олимпиады в современных условиях. Самарский научный вестник. 2013. № 3 (4). С. 61-63.
Лысогорова Л.В., Кочетова Н.Г., Зубова С.П. Реализация принципа обучения математике на повышенном уровне трудности. В сборнике: Научные проблемы образования третьего тысячелетия VII Всероссийская научно-практическая конференция с международным участием. 2013. С. 109-114.
Ключевые слова
Похожие статьи
Метод «переброски» при решении квадратныхуравнений
. Далее уравнение решают устно описанным выше способом, затем возвращаются к исходной переменной и находят корниуравнений и .
Старшийкоэффициент функции равен 2, а>0, ветви параболы направлены вверх, следовательно, y>0 при хϵ (-∞; 0,5)ᵁ(1; +∞)
7. Свойства коэффициентовквадратногоуравнения.
Квадратноеуравнение — уравнениевида ax2+ bx + c = 0, где a, b, c — некоторые числа (a ≠ 0), x — неизвестное.
Берём первый коэффициент и умножаем его на свободный член: x2+2x-15=0. Корнями этого уравнения будут числа, произведение которых равно — 15, а сумма равна.
Оптимальные способы решения квадратныхуравнений
Квадратным называется уравнениевида: ax2 +bx + c = 0, a 0, в котором х – переменная, а,b,с – любые числа. Числа а и b называются первым и вторым коэффициентами, а число с – свободным членом квадратногоуравнения. В школьном курсе математики изучаются.
О корнях кубического уравнения | Статья в журнале.
Известно, что решение некоторых теоретических и практических задач, а также моделирование некоторых физических процессов требует определение границ отрезков (интервалов) в которых находятся корни кубического уравнения с действительными коэффициентами.
Линейные уравнения | Статья в журнале «Школьная педагогика»
Корнемуравнения называется, то значение неизвестного, при котором это уравнение
Решение многих уравнений сводится к решению линейных уравнений. уравнение, часть
решение уравнения, коэффициентуравнения, общее решение уравнения, решение, вид.
Использование тестов на уроках математики | Статья в журнале.
Если уравнение имеет более одного корня, то в ответе запишите сумму всех его корней.
Некоторые способы активизации мыслительной деятельности.
Способы решения квадратныхуравнений. Графическое решение квадратногоуравнения. Решение уравнений с использованием теоремы Виета.
квадратноеуравнение, уравнение, обратная теорема, решение, исходное уравнение, ответ, помощь теоремы.
Методика преподавания темы «Линейное уравнение» в 7-м классе
Для такого уравнения не будет корней, если же а будет равняться 2, то уравнение приобретет другой вид — 0х = 0. При этом любое число, которое можно подставить вместо Х из множества действительных числен, будет рассматриваться как его корень.
Введение адаптивных методов обучения при решении уравнений.
решение простейших уравнений данного вида; анализ действий, необходимых для их
Способы решения квадратныхуравнений различных видов школьные учебники по алгебре
Что же такое «квадратныеуравнения»? Квадратноеуравнение — уравнениевида ax2+ bx.
Источник
Теорема Виета для квадратного уравнения
О чем эта статья:
Основные понятия
Квадратное уравнение — это ax 2 + bx + c = 0, где a — первый коэффициент, не равный нулю, b — второй коэффициент, c — свободный член.
Существует три вида квадратных уравнений:
не имеют корней;
имеют один корень;
имеют два различных корня.
Чтобы определить, сколько корней имеет уравнение, нужно обратить внимание на дискриминант. Формула для его поиска записывается так: D = b 2 − 4ac. Его свойства:
если D 0, есть два различных корня.
В математике теоремой принято называть утверждение, у которого ранее было сформулировано доказательство.
Формула Виета
Если в школьной геометрии чаще всего используется теорема Пифагора, то в школьной алгебре ведущую роль занимают формулы Виета. Теорема звучит так:
Сумма корней x 2 + bx + c = 0 равна второму коэффициенту с противоположным знаком, а произведение корней равняется свободному члену.
Если дано x 2 + bx + c = 0, где x₁ и x₂ являются корнями, то справедливы два равенства:
Знак системы, который принято обозначать фигурной скобкой, означает, что значения x₁ и x₂ удовлетворяют обоим равенствам.
Пока неизвестно, какие корни имеет данное уравнение. Но в соответствии с теоремой можно записать, что сумма этих корней равна второму коэффициенту с противоположным знаком. Он равен четырем, значит будем использовать минус четыре:
Произведение корней по теореме соответствует свободному члену. В данном случае свободным членом является число три. Значит:
Необходимо проверить равна ли сумма корней −4, а произведение 3. Для этого найдем корни уравнения x 2 + 4x + 3 = 0. Воспользуемся формулами для чётного второго коэффициента: 2 + 4x + 3 = 0″ height=»215″ src=»https://lh5.googleusercontent.com/E_X403ETh_88EANRWdQN03KRT8yxP2HO4HoCrxj__c8G0DqmNJ1KDRqtLH5Z1p7DtHm-rNMDB2tEs41D7RHpEV5mojDTMMRPuIkcW33jVNDoOe0ylzXdHATLSGzW4NakMkH2zkLE» width=»393″>
Получилось, что корнями уравнения являются числа −1 и −3. Их сумма равняется второму коэффициенту с противоположным знаком, а значит решение верное. 2 + 4x + 3 = 0″ height=»52″ src=»https://lh5.googleusercontent.com/VzGPXO9B0ZYrr9v0DpJfXwuzeZtjYnDxE_ma76PUC8o7jVWwa8kZjTJhq2Lof0TiJXAp_ny3yRwI_OyRzeucv9xUZ63yoozGPP4xd4OxvElVT7Pt-d6xL5w17e_mQNs5qZJQiwfG» width=»125″>
Произведение корней −1 и −3 по теореме Виета должно равняться свободному члену, то есть числу 3. Это условие также выполняется: 2 + 4x + 3 = 0″ height=»52″ src=»https://lh4.googleusercontent.com/Cq-LCFmY3YGNSan1VF3l3CqIeojoJYAvGAiTBWnzyoZu_xJFrF5NfQ3xCe59apJklw6uYbmQ4lAkBTeC-TJmEGicN3rgGtsezhuqdNiOWjZT39NziOB5uOmQr3cr9-5fNnepdZDo» width=»112″>
Результат проделанных вычислений в том, что мы убедились в справедливости выражения:
Доказательство теоремы Виета
Дано квадратное уравнение x 2 + bx + c = 0. Если его дискриминант больше нуля, то оно имеет два корня, сумма которых равна второму коэффициенту с противоположным знаком, а произведение корней равно свободному члену:
Докажем, что следующие равенства верны
x₁ + x₂ = −b,
x₁ * x₂ = c.
Чтобы найти сумму корней x₁ и x₂ подставим вместо них то, что соответствует им из правой части формул корней. Напомним, что в данном квадратном уравнении x 2 + bx + c = 0 старший коэффициент равен единице. Значит после подстановки знаменатель будет равен 2.
Объединим числитель и знаменатель в правой части.
Раскроем скобки и приведем подобные члены:
Сократим дробь полученную дробь на 2, остается −b:
Мы доказали: x₁ + x₂ = −b.
Далее произведем аналогичные действия, чтобы доказать о равенстве x₁ * x₂ свободному члену c.
Подставим вместо x₁ и x₂ соответствующие части из формул корней квадратного уравнения:
Перемножаем числители и знаменатели между собой:
Очевидно, в числителе содержится произведение суммы и разности двух выражений. Поэтому воспользуемся тождеством (a + b) * (a − b) = a 2 − b 2 . Получаем:
Далее произведем трансформации в числителе:
Нам известно, что D = b2 − 4ac. Подставим это выражение вместо D.
Далее раскроем скобки и приведем подобные члены:
Сократим:
Мы доказали: x₁ * x₂ = c.
Значит сумма корней приведённого квадратного уравнения x 2 + bx + c = 0 равна второму коэффициенту с противоположным знаком (x₁ + x₂ = −b), а произведение корней равно свободному члену (x₁ * x₂= c). Теорема доказана.
Обратная теорема Виета
Когда дана сумма и произведение корней квадратного уравнения, принято начинать подбор подходящих корней. Теорема, обратная теореме Виета, при таких условиях может быть главным помощником. Она формулируется так:
Обратная теорема Виета
Если числа x₁ и x₂ таковы, что их сумма равна второму коэффициенту уравнения x 2 + bx + c = 0, взятому с противоположным знаком, а их произведение равно свободному члену, то эти числа являются корнями x 2 + bx + c = 0.
Обратные теоремы зачастую сформулированы так, что их утверждением является заключение первой теоремы. Так, при доказательстве теоремы Виета стало понятно, что сумма x₁ и x₂ равна −b, а их произведение равно c. В обратной теореме это является утверждением.
Докажем теорему, обратную теореме Виета
Корни x₁ и x₂ обозначим как m и n. Тогда утверждение будет звучать следующим образом: если сумма чисел m и n равна второму коэффициенту x 2 + bx + c = 0, взятому с противоположным знаком, а произведение равно свободному члену, то числа m и n являются корнями x 2 + bx + c = 0.
Зафиксируем, что сумма m и n равна −b, а произведение равно c.
Чтобы доказать, что числа m и n являются корнями уравнения, нужно поочередно подставить буквы m и n вместо x, затем выполнить возможные тождественные преобразования. Если в результате преобразований левая часть станет равна нулю, то это будет означать, что числа m и n являются корнями x 2 + bx + c = 0.
Выразим b из равенства m + n = −b. Это можно сделать, умножив обе части на −1:
Подставим m в уравнение вместо x, выражение −m − n подставим вместо b, а выражение mn — вместо c:
При x = m получается верное равенство. Значит число m является искомым корнем.
Аналогично докажем, что число n является корнем уравнения. Подставим вместо x букву n, а вместо c подставим m * n, поскольку c = m * n.
При x = n получается верное равенство. Значит число n является искомым корнем.
Мы доказали: числа m и n являются корнями уравнения x 2 + bx + c = 0.
Примеры
Для закрепления знаний рассмотрим примеры решения уравнений по теореме, обратной теореме Виета.
Дано: x 2 − 6x + 8 = 0.
Для начала запишем сумму и произведение корней уравнения. Сумма будет равна 6, так как второй коэффициент равен −6. А произведение корней равно 8. 2 − 6x + 8 = 0″ height=»59″ src=»https://lh6.googleusercontent.com/tFokx3SM93Hwlr7ZM9BqX1xiHKv_2dUIB9MoNa8RAwSTmQKXdCcqcFXxTZmxNGw7bOVek-RzRXqBkoCqnYMiqIYVwKhfnHeU-7mA03feEqJTlyKB7e-OsTTKgPaOlddfiaTGszcv» width=»99″>
Имея эти два равенства можно подобрать подходящие корни, которые будут удовлетворять как равенству обоим равенствам системы.
Подбор корней удобнее выполнять с помощью их произведения. Число 8 можно получить путем перемножения чисел 4 и 2 либо 1 и 8. Но значения x₁ и x₂ надо подбирать так, чтобы они удовлетворяли и второму равенству тоже.
Можно сделать вывод, что значения 1 и 8 не подходят, так как они не удовлетворяют равенству x₁ + x₂ = 6. Значения 4 и 2 подходят обоим равенствам:
Значит числа 4 и 2 являются корнями уравнения x 2 − 6x + 8 = 0. 2 − 6x + 8 = 0″ height=»57″ src=»https://lh3.googleusercontent.com/rohB7Bvd-elMhTxEUuOhKqLJjqLAvo9VlJxZvOnMeDAHARfKT-SYOWb1WXTTWEN2h0oKbLl6wH7lc0IWL_vH3Si2AJGAGXVn8TPFDT_J1Wu2WeoQ-WP1qgXjCnZ99tWUkK2BOvF2″ width=»64″>
Неприведенное квадратное уравнение
Теорема Виета выполняется только тогда, когда квадратное уравнение является приведённым, то есть его первый коэффициент равен единице:
ax 2 + bx + c = 0, где а = 1.
Если квадратное уравнение не является приведенным, но задание связано с применением теоремы, нужно обе части разделить на коэффициент, который располагается перед x 2 .
Получилось следующее приведенное уравнение:
Получается, коэффициент при x равен, свободный член —. Значит сумма и произведение корней будут иметь вид:
Рассмотрим пример неприведенного уравнения: 4x 2 + 5x + 1 = 0. Разделим обе его части на коэффициент перед x 2 , то есть на 4.
Получилось приведённое квадратное уравнение. Второй коэффициент которого равен, а свободный член.