Способ коэффициентов для квадратного уравнения

Содержание
  1. Метод коэффициентов при решении квадратных уравнений
  2. Библиографическое описание:
  3. Ключевые слова
  4. Похожие статьи
  5. Метод «переброски» при решении квадратных уравнений
  6. 7. Свойства коэффициентов квадратного уравнения.
  7. Оптимальные способы решения квадратных уравнений
  8. О корнях кубического уравнения | Статья в журнале.
  9. Линейные уравнения | Статья в журнале «Школьная педагогика»
  10. Использование тестов на уроках математики | Статья в журнале.
  11. Некоторые способы активизации мыслительной деятельности.
  12. Методика преподавания темы «Линейное уравнение» в 7-м классе
  13. Введение адаптивных методов обучения при решении уравнений.
  14. Теорема Виета для квадратного уравнения
  15. Основные понятия
  16. Формула Виета
  17. Доказательство теоремы Виета
  18. Обратная теорема Виета
  19. Докажем теорему, обратную теореме Виета
  20. Примеры
  21. Неприведенное квадратное уравнение

Метод коэффициентов при решении квадратных уравнений

Дата публикации: 19.03.2018 2018-03-19

Статья просмотрена: 8531 раз

Библиографическое описание:

Прямостанов, С. М. Метод коэффициентов при решении квадратных уравнений / С. М. Прямостанов, Л. В. Лысогорова. — Текст : непосредственный // Юный ученый. — 2018. — № 1.1 (15.1). — С. 66-67. — URL: https://moluch.ru/young/archive/15/1165/ (дата обращения: 19.11.2021).

В статье описываются нестандартные способы решения квадратных уравнений.

Ключевые слова: уравнения, квадратные уравнения, способы решения квадратных уравнений.

В школьном курсе математики изучается решение полных квадратных уравнений с помощью дискриминанта, теоремы обратной теореме Виета, выделения полного квадрата. Однако, имеются и другие приемы решения квадратных уравнений, которые позволяют очень быстро и рационально решать квадратные уравнения:

1. Прием переброски старшего коэффициента

Коэффициент а умножается на с, таким образом «перебрасывается» к свободному члену. Получается следующее уравнение у 2 +ру+к=0, тогда

х1=, х2=.

Пример:2х 2 -9х-5=0

У 2 -9у-10=0. у1=10, у2=-1, тогда х1==5, х2=-0,5.

Данный метод удобен в том случае, когда после переброски корни находятся по т. Виета, или (а+в+с=0; а-в+с=0).

Пример: . При переброске старшего коэффициента получим уравнение . По теореме, обратной т.Виета, получим корни у1=-3, у2=-, тогда х1==, х2=.

2. Сумма коэффициентов квадратного уравнения: ах 2 +вх+с=0.

 Если выполняется условие а+в+с=0, то х1=1, х2=.

Пример: 21х 2 -3940х+3919=0. Так как 21-3940+3919=0 то, х1=1, х2=.

 Если а-в+с=0, то х1=-1, х2=.

Пример: х 2 +1357х+1356=0. Так как 1-1357+1356=0, то х1=-1, х2=-1356.

3. Метод решения квадратных уравнений вида: ах 2 ± (а 2 +1)х ± а=0.

 В уравнениях вида ах 2 +(а 2 +1)х+а=0 корни х1=- а, х2=-.

Пример: 25х 2 +626х+25=0, х1=- 25, х2= – .

 В уравнениях вида ах 2 — (а 2 +1)х+а=0 корни х1= а, х2=.

Пример: 13х 2 — 170х+13=0, х1=13, х2= .

 В уравнениях вида ах 2 +(а 2 +1)х- а=0 корни х1=- а, х2=.

Пример: 25х 2 +626х – 25=0, х1=- 25, х2= .

 В уравнениях вида ах 2 — (а 2 +1)х- а=0 корни х1= а, х2=.

Пример: 13х 2 — 170х-13=0, х1=13, х2= .

В уравнениях вида ах 2 -(а 2 +1)х+а=0 можно перебросить старший коэффициент, получим уравнение вида у 2 -(а 2 +1)у+а 2 =0. Сумма коэффициентов 1-(а 2 +1)+а 2 =0, следовательно у1=1, у2=а 2 , тогда х1=, х2=а.

Предлагаем решить следующие уравнения, используя рассмотренные приемы:

  1. Решить квадратные уравнения с большими коэффициентами

1978х 2 – 1984х + 6=0

4х 2 + 11х + 7 = 0

319х 2 + 1988х +1669=0

1999х 2 + 2000х+1=0

839х 2 – 448х -391=0

345х 2 – 137х – 208=0

  1. Решите уравнение

а) 20092008х 2 -20092009х+1 (Олимпиада 2009 г. для поступающих в СМАЛ)

б) x(x+ 1) = 2014·2015 (турнир Ломоносова)

  1. Найди наиболее рациональным способом корни уравнения:

37х 2 +1370х – 37=0

38х 2 +3365 – 38=0

69х 2 — 4762х+69=0

69х 2 +4762х – 69=0

69х 2 +4762х – 69=0

Каждое из этих уравнений может быть решено без использования формулы корней квадратного уравнения; без громоздких вычислений; каждое решение уравнения почти устное.

Умение быстро и рационально решать квадратные уравнения необходимо для решения более сложных уравнений, например, дробно-рациональных уравнений, уравнений высших степеней, биквадратных уравнений, а в старшей школе тригонометрических, показательных и логарифмических уравнений.

  1. Галицкий М.Л., Гольдман М., Звавич Л.И. Сборник задач по алгебре для 8-9 классов: учебное пособие для учащихся школ и классов с углубленным изучением математики:4-е изд.-М.: Просвещение, 1997.
  2. Макарычев Ю.Н., Миндюк Н.Г. Алгебра. Учебник для 8 класса. М., Просвещение, 2001.
  3. Штейнгауз В.Г. Математический калейдоскоп. – М.: Бюро «Квантум», 2005.
  4. Энциклопедический словарь юного математика. – М.: Педагогика, 1985.
  5. Лысогорова Л.В. Педагогические условия развития математических способностей младших школьников //Сибирский педагогический журнал. 2007. № 9. С. 228-233.
  6. Зубова С.П., Лысогорова Л.В. Математические олимпиады в современных условиях. Самарский научный вестник. 2013. № 3 (4). С. 61-63.
  7. Лысогорова Л.В., Кочетова Н.Г., Зубова С.П. Реализация принципа обучения математике на повышенном уровне трудности. В сборнике: Научные проблемы образования третьего тысячелетия VII Всероссийская научно-практическая конференция с международным участием. 2013. С. 109-114.

Ключевые слова

Похожие статьи

Метод «переброски» при решении квадратных уравнений

. Далее уравнение решают устно описанным выше способом, затем возвращаются к исходной переменной и находят корни уравнений и .

Старший коэффициент функции равен 2, а>0, ветви параболы направлены вверх, следовательно, y>0 при хϵ (-∞; 0,5)ᵁ(1; +∞)

7. Свойства коэффициентов квадратного уравнения.

Квадратное уравнениеуравнение вида ax2+ bx + c = 0, где a, b, c — некоторые числа (a ≠ 0), x — неизвестное.

Берём первый коэффициент и умножаем его на свободный член: x2+2x-15=0. Корнями этого уравнения будут числа, произведение которых равно — 15, а сумма равна.

Оптимальные способы решения квадратных уравнений

Квадратным называется уравнение вида: ax2 +bx + c = 0, a 0, в котором х – переменная, а,b,с – любые числа. Числа а и b называются первым и вторым коэффициентами, а число с – свободным членом квадратного уравнения. В школьном курсе математики изучаются.

О корнях кубического уравнения | Статья в журнале.

Известно, что решение некоторых теоретических и практических задач, а также моделирование некоторых физических процессов требует определение границ отрезков (интервалов) в которых находятся корни кубического уравнения с действительными коэффициентами.

Линейные уравнения | Статья в журнале «Школьная педагогика»

Корнем уравнения называется, то значение неизвестного, при котором это уравнение

Решение многих уравнений сводится к решению линейных уравнений. уравнение, часть

решение уравнения, коэффициент уравнения, общее решение уравнения, решение, вид.

Использование тестов на уроках математики | Статья в журнале.

Если уравнение имеет более одного корня, то в ответе запишите сумму всех его корней.

Основные термины (генерируются автоматически): корень уравнения, промежуток, больший корень уравнения, сумма корней уравнения, содержащий корень уравнения, произведение.

Некоторые способы активизации мыслительной деятельности.

Способы решения квадратных уравнений. Графическое решение квадратного уравнения. Решение уравнений с использованием теоремы Виета.

квадратное уравнение, уравнение, обратная теорема, решение, исходное уравнение, ответ, помощь теоремы.

Методика преподавания темы «Линейное уравнение» в 7-м классе

Для такого уравнения не будет корней, если же а будет равняться 2, то уравнение приобретет другой вид — 0х = 0. При этом любое число, которое можно подставить вместо Х из множества действительных числен, будет рассматриваться как его корень.

Введение адаптивных методов обучения при решении уравнений.

решение простейших уравнений данного вида; анализ действий, необходимых для их

Способы решения квадратных уравнений различных видов школьные учебники по алгебре

Что же такое «квадратные уравнения»? Квадратное уравнениеуравнение вида ax2+ bx.

Источник

Теорема Виета для квадратного уравнения

О чем эта статья:

Основные понятия

Квадратное уравнение — это ax 2 + bx + c = 0, где a — первый коэффициент, не равный нулю, b — второй коэффициент, c — свободный член.

Существует три вида квадратных уравнений:

  • не имеют корней;
  • имеют один корень;
  • имеют два различных корня.

Чтобы определить, сколько корней имеет уравнение, нужно обратить внимание на дискриминант. Формула для его поиска записывается так: D = b 2 − 4ac. Его свойства:

  • если D 0, есть два различных корня.

В математике теоремой принято называть утверждение, у которого ранее было сформулировано доказательство.

Формула Виета

Если в школьной геометрии чаще всего используется теорема Пифагора, то в школьной алгебре ведущую роль занимают формулы Виета. Теорема звучит так:

Сумма корней x 2 + bx + c = 0 равна второму коэффициенту с противоположным знаком, а произведение корней равняется свободному члену.

Если дано x 2 + bx + c = 0, где x₁ и x₂ являются корнями, то справедливы два равенства:

Знак системы, который принято обозначать фигурной скобкой, означает, что значения x₁ и x₂ удовлетворяют обоим равенствам.

Рассмотрим теорему Виета на примере: x 2 + 4x + 3 = 0.

Пока неизвестно, какие корни имеет данное уравнение. Но в соответствии с теоремой можно записать, что сумма этих корней равна второму коэффициенту с противоположным знаком. Он равен четырем, значит будем использовать минус четыре:

Произведение корней по теореме соответствует свободному члену. В данном случае свободным членом является число три. Значит:

Необходимо проверить равна ли сумма корней −4, а произведение 3. Для этого найдем корни уравнения x 2 + 4x + 3 = 0. Воспользуемся формулами для чётного второго коэффициента:
2 + 4x + 3 = 0″ height=»215″ src=»https://lh5.googleusercontent.com/E_X403ETh_88EANRWdQN03KRT8yxP2HO4HoCrxj__c8G0DqmNJ1KDRqtLH5Z1p7DtHm-rNMDB2tEs41D7RHpEV5mojDTMMRPuIkcW33jVNDoOe0ylzXdHATLSGzW4NakMkH2zkLE» width=»393″>

Получилось, что корнями уравнения являются числа −1 и −3. Их сумма равняется второму коэффициенту с противоположным знаком, а значит решение верное.
2 + 4x + 3 = 0″ height=»52″ src=»https://lh5.googleusercontent.com/VzGPXO9B0ZYrr9v0DpJfXwuzeZtjYnDxE_ma76PUC8o7jVWwa8kZjTJhq2Lof0TiJXAp_ny3yRwI_OyRzeucv9xUZ63yoozGPP4xd4OxvElVT7Pt-d6xL5w17e_mQNs5qZJQiwfG» width=»125″>

Произведение корней −1 и −3 по теореме Виета должно равняться свободному члену, то есть числу 3. Это условие также выполняется:
2 + 4x + 3 = 0″ height=»52″ src=»https://lh4.googleusercontent.com/Cq-LCFmY3YGNSan1VF3l3CqIeojoJYAvGAiTBWnzyoZu_xJFrF5NfQ3xCe59apJklw6uYbmQ4lAkBTeC-TJmEGicN3rgGtsezhuqdNiOWjZT39NziOB5uOmQr3cr9-5fNnepdZDo» width=»112″>

Результат проделанных вычислений в том, что мы убедились в справедливости выражения:

Доказательство теоремы Виета

Дано квадратное уравнение x 2 + bx + c = 0. Если его дискриминант больше нуля, то оно имеет два корня, сумма которых равна второму коэффициенту с противоположным знаком, а произведение корней равно свободному члену:

Докажем, что следующие равенства верны

  • x₁ + x₂ = −b,
  • x₁ * x₂ = c.

Чтобы найти сумму корней x₁ и x₂ подставим вместо них то, что соответствует им из правой части формул корней. Напомним, что в данном квадратном уравнении x 2 + bx + c = 0 старший коэффициент равен единице. Значит после подстановки знаменатель будет равен 2.

    Объединим числитель и знаменатель в правой части.

Раскроем скобки и приведем подобные члены:

Сократим дробь полученную дробь на 2, остается −b:

Мы доказали: x₁ + x₂ = −b.

Далее произведем аналогичные действия, чтобы доказать о равенстве x₁ * x₂ свободному члену c.

    Подставим вместо x₁ и x₂ соответствующие части из формул корней квадратного уравнения:

Перемножаем числители и знаменатели между собой:

Очевидно, в числителе содержится произведение суммы и разности двух выражений. Поэтому воспользуемся тождеством (a + b) * (a − b) = a 2 − b 2 . Получаем:

Далее произведем трансформации в числителе:

Нам известно, что D = b2 − 4ac. Подставим это выражение вместо D.

Далее раскроем скобки и приведем подобные члены:

Сократим:

Мы доказали: x₁ * x₂ = c.

Значит сумма корней приведённого квадратного уравнения x 2 + bx + c = 0 равна второму коэффициенту с противоположным знаком (x₁ + x₂ = −b), а произведение корней равно свободному члену (x₁ * x₂= c). Теорема доказана.

Обратная теорема Виета

Когда дана сумма и произведение корней квадратного уравнения, принято начинать подбор подходящих корней. Теорема, обратная теореме Виета, при таких условиях может быть главным помощником. Она формулируется так:

Обратная теорема Виета

Если числа x₁ и x₂ таковы, что их сумма равна второму коэффициенту уравнения x 2 + bx + c = 0, взятому с противоположным знаком, а их произведение равно свободному члену, то эти числа являются корнями x 2 + bx + c = 0.

Обратные теоремы зачастую сформулированы так, что их утверждением является заключение первой теоремы. Так, при доказательстве теоремы Виета стало понятно, что сумма x₁ и x₂ равна −b, а их произведение равно c. В обратной теореме это является утверждением.

Докажем теорему, обратную теореме Виета

Корни x₁ и x₂ обозначим как m и n. Тогда утверждение будет звучать следующим образом: если сумма чисел m и n равна второму коэффициенту x 2 + bx + c = 0, взятому с противоположным знаком, а произведение равно свободному члену, то числа m и n являются корнями x 2 + bx + c = 0.

Зафиксируем, что сумма m и n равна −b, а произведение равно c.

Чтобы доказать, что числа m и n являются корнями уравнения, нужно поочередно подставить буквы m и n вместо x, затем выполнить возможные тождественные преобразования. Если в результате преобразований левая часть станет равна нулю, то это будет означать, что числа m и n являются корнями x 2 + bx + c = 0.

    Выразим b из равенства m + n = −b. Это можно сделать, умножив обе части на −1:

Подставим m в уравнение вместо x, выражение −m − n подставим вместо b, а выражение mn — вместо c:

При x = m получается верное равенство. Значит число m является искомым корнем.

  1. Аналогично докажем, что число n является корнем уравнения. Подставим вместо x букву n, а вместо c подставим m * n, поскольку c = m * n.

    При x = n получается верное равенство. Значит число n является искомым корнем.

Мы доказали: числа m и n являются корнями уравнения x 2 + bx + c = 0.

Примеры

Для закрепления знаний рассмотрим примеры решения уравнений по теореме, обратной теореме Виета.

Дано: x 2 − 6x + 8 = 0.

Для начала запишем сумму и произведение корней уравнения. Сумма будет равна 6, так как второй коэффициент равен −6. А произведение корней равно 8.
2 − 6x + 8 = 0″ height=»59″ src=»https://lh6.googleusercontent.com/tFokx3SM93Hwlr7ZM9BqX1xiHKv_2dUIB9MoNa8RAwSTmQKXdCcqcFXxTZmxNGw7bOVek-RzRXqBkoCqnYMiqIYVwKhfnHeU-7mA03feEqJTlyKB7e-OsTTKgPaOlddfiaTGszcv» width=»99″>

Имея эти два равенства можно подобрать подходящие корни, которые будут удовлетворять как равенству обоим равенствам системы.

Подбор корней удобнее выполнять с помощью их произведения. Число 8 можно получить путем перемножения чисел 4 и 2 либо 1 и 8. Но значения x₁ и x₂ надо подбирать так, чтобы они удовлетворяли и второму равенству тоже.

Можно сделать вывод, что значения 1 и 8 не подходят, так как они не удовлетворяют равенству x₁ + x₂ = 6. Значения 4 и 2 подходят обоим равенствам:

Значит числа 4 и 2 являются корнями уравнения x 2 − 6x + 8 = 0.
2 − 6x + 8 = 0″ height=»57″ src=»https://lh3.googleusercontent.com/rohB7Bvd-elMhTxEUuOhKqLJjqLAvo9VlJxZvOnMeDAHARfKT-SYOWb1WXTTWEN2h0oKbLl6wH7lc0IWL_vH3Si2AJGAGXVn8TPFDT_J1Wu2WeoQ-WP1qgXjCnZ99tWUkK2BOvF2″ width=»64″>

Неприведенное квадратное уравнение

Теорема Виета выполняется только тогда, когда квадратное уравнение является приведённым, то есть его первый коэффициент равен единице:

ax 2 + bx + c = 0, где а = 1.

Если квадратное уравнение не является приведенным, но задание связано с применением теоремы, нужно обе части разделить на коэффициент, который располагается перед x 2 .

  1. Получилось следующее приведенное уравнение:

    Получается, коэффициент при x равен, свободный член —. Значит сумма и произведение корней будут иметь вид:

Рассмотрим пример неприведенного уравнения: 4x 2 + 5x + 1 = 0. Разделим обе его части на коэффициент перед x 2 , то есть на 4.

  • Получилось приведённое квадратное уравнение. Второй коэффициент которого равен, а свободный член.
  • Тогда в соответствии с теоремой Виета получаем:
  • Метод подбора помогает найти корни: −1 и
  • Источник

    Читайте также:  Социальное проектирование это способ
    Оцените статью
    Разные способы