Метрология. Прямые и косвенные измерения.
Метрологией называется наука об измерениях, методах и средствах обеспечения их единства и способах достижения требуемой точности.
Измерением называется нахождение значения физической величины опытным путем с помощью специальных технических средств. Результатом измерения является количественная характеристика физической величины в виде числа единиц измеряемой величины и погрешность, с которой получено данное число.
Виды измерений. В зависимости от способа получения числового значения измеряемой величины измерения делятся на прямые, косвенные и совокупные измерения.
Прямыми называются измерения, при которых искомое значение величины получают из опытных данных. При прямых измерениях экспериментальные операции производятся над самой измеряемой величиной. Числовое значение измеряемой величины получают в экспериментальном сравнении с мерой или по показаниям приборов. Например, измерение тока амперметром, напряжения вольтметром, температуры термометром, массы на весах.
Косвенными называют такие измерения, при которых числовое значение измеряемой величины определяется по известной функциональной зависимости через другие величины, которые можно прямо измерить. При косвенных измерениях числовое значение измеряемой величины получают с участием оператора на основе прямых измерений – решением одного уравнения. К косвенным измерениям прибегают в тех случаях, когда неудобно или невозможно осуществить автоматическое вычисление известной зависимости между одной или несколькими входными величинами и измеряемой величиной. Например, мощность в цепях постоянного тока определяет оператор, умножая напряжение на ток, измеренные прямым измерением с помощью амперметра и вольтметра.
Отклонение результата измерения от истинного значения измеряемой величины называют погрешностью измерения.
Абсолютная погрешность измерения равна разности между результатом измерения и истинным значением измеряемой величины
:
.
Относительная погрешность измерения представляет собой отношение абсолютной погрешности измерения
к истинному значению измеряемой величины. Обычно относительная погрешность выражается в процентах
%.
25. Основные понятия и определения: информация, алгоритм, программа, команда, данные, технические устройства.
Информация — от латинского слова «information», что означает сведения, разъяснения, изложение.
Применительно к компьютерной обработке данных под информацией понимают некоторую последовательность символических обозначений (букв, цифр, закодированных графических образов и звуков и т.п.), несущую смысловую нагрузку и представленную в понятном компьютеру виде. Каждый новый символ в такой последовательности символов увеличивает информационный объём сообщения.
Алгоритм — последовательность чётко определенных действий, выполнение которых ведёт к решению задачи. Алгоритм, записанный на языке машины, есть программа решения задачи.
Свойства алгоритмов: дискретность, понятность, результативность, определенность, массовость.
Программа — последовательность действий, инструкций, предписаний для некоторого вычислительного устройства; файл, содержащий эту последовательность действий.
Команда — это указание компьютерной программе действовать как некий интерпретатор для решения задачи. В более общем случае, команда — это указание некоему интерфейсу командной строки.
Данные — информация, представленная в формализованном виде, что обеспечивает возможность ее хранения, обработки и передачи.
Технические устройства (средства информатизации) – это совокупность систем, машин, приборов, механизмов, устройств и прочих видов оборудования, предназначенных для автоматизации различных технологических процессов информатики, причем таких, выходным продуктом которых является именно информация (сведения, знания) или данные, используемые для удовлетворения информационных потребностей в разных областях предметной деятельности общества.
Все технические средства информатизации в зависимости от выполняемых функций можно разделить на шесть групп : устройства ввода информации, устройства вывода информации, устройства обработки информации, устройства передачи и приема информации, устройства хранения информации, многофункциональные устройства.
Источник
27.2. Виды измерений
Измерения различают по способу получения информации, по характеру изменений измеряемой величины в процессе измерений, по количеству измерительной информации, по отношению к основным единицам.
По способу получения информации измерения разделяют на прямые, косвенные, совокупные и совместные.
Прямые измерения — это непосредственное сравнение физической величины с ее мерой. Например, при определении длины предмета линейкой происходит сравнение искомой величины (количественного выражения значения длины) с мерой, т.е. линейкой.
Косвенные измерения отличаются от прямых тем, что искомое значение величины устанавливают по результатам прямых измерений таких величин, которые связаны с искомой определенной зависимостью, Так, если измерить силу тока амперметром, а напряжение вольтметром, то по известной функциональной взаимосвязи всех трех названных величин можно рассчитать мощность электрической цепи.
Совокупные измерения сопряжены с решением системы уравнений, составляемых по результатам одновременных измерений нескольких однородных величин. Решение системы уравнений дает возможность вычислить искомую величину.
Совместные измерения — это измерения двух или более неоднородных физических величин для определения зависимости между ними.
Совокупные и совместные измерения часто применяют в измерениях различных параметров и характеристик в области электротехники.
По характеру изменения измеряемой величины в процессе измерений бывают статистические, динамические и статические измерения.
Статистические измерения связаны с определением характеристик случайных процессов, звуковых сигналов, уровня шумов и т.д.
Статические измерения имеют место тогда, когда измеряемая величина практически постоянна.
Динамические измерения связаны с такими величинами, которые в процессе измерений претерпевают те или иные изменения.
Статические и динамические измерения в идеальном виде на практике редки.
По количеству измерительной информации различают однократные и многократные измерения.
Однократные измерения — это одно измерение одной величины, т.е. число измерений равно числу измеряемых величин. Практическое применение такого вида измерений всегда сопряжено с большими погрешностями, поэтому следует проводить не менее трех однократных измерений и находить конечный результат как среднее арифметическое значение.
Многократные измерения характеризуются превышением числа измерений количества измеряемых величин. Обычно минимальное число измерений в данном случае больше трех. Преимущество многократных измерений — в значительном снижении влияний случайных факторов на погрешность измерения.
По отношению к основным единицам измерения делят на абсолютные и относительные.
Абсолютными измерениями называют такие, при которых используются прямое измерение одной (иногда нескольких) основной величины и физическая константа. Так, в известной формуле Эйнштейна Е=тс 2 масса (m) — основная физическая величина, которая может быть измерена прямым путем (взвешиванием), а скорость света (c) — физическая константа.
Относительные измерения базируются на установлении отношения измеряемой величины к однородной, применяемой в качестве единицы. Естественно, что искомое значение зависит от используемой единицы измерений.
С измерениями связаны такие понятия, как «шкала измерений», «принцип измерений», «метод измерений».
Шкала измерений — это упорядоченная совокупность значений физической величины, которая служит основой для ее измерения. Поясним это понятие на примере температурных шкал.
В шкале Цельсия за начало отсчета принята температура таяния льда, а в качестве основного интервала (опорной точки) — температура кипения воды. Одна сотая часть этого интервала является единицей температуры (градус Цельсия). В температурной шкале Фаренгейта за начало отсчета принята температура таяния смеси льда и нашатырного спирта (либо поваренной соли), а в качестве опорной точки взята нормальная температура тела здорового человека. За единицу температуры (градус Фаренгейта) принята одна девяносто шестая часть основного интервала. По этой шкале температура таяния льда равна + 32°F, а температура кипения воды + 212°F. Таким образом, если по шкале Цельсия разность между температурой кипения воды и таяния льда составляет 100°С, то по Фаренгейту она равна 180°F. На этом примере мы видим роль принятой шкалы как в количественном значении измеряемой величины, так и в аспекте обеспечения единства измерений. В данном случае требуется находить отношение размеров единиц, чтобы можно было сравнить результаты измерений, т.е. t o F/t°C.
В метрологической практике известны несколько разновидностей шкал: шкала наименований, шкала порядка, шкала интервалов, шкала отношений и др.
Шкала наименований — это своего рода качественная, а не количественная шкала, она не содержит нуля и единиц измерений. Примером может служить атлас цветов (шкала цветов). Процесс измерения заключается в визуальном сравнении окрашенного предмета с образцами цветов (эталонными образцами атласа
цветов). Поскольку каждый цвет имеет немало вариантов, такое сравнение под силу опытному эксперту, который обладает не только практическим опытом, но и соответствующими особыми характеристиками зрительных возможностей
Шкала порядка характеризует значение измеряемой величины в баллах (шкала землетрясений, силы ветра, твердости физических тел и т.п.).
Шкала интервалов (разностей) имеет условные нулевые значения, а интервалы устанавливаются по согласованию. Такими шкалами являются шкала времени, шкала длины.
Шкала отношений имеет естественное нулевое значение, а единица измерений устанавливается по согласованию. Например, шкала массы (обычно мы говорим «веса»), начинаясь от нуля, может быть градуирована по-разному в зависимости от требуемой точности взвешивания. Сравните бытовые и аналитические весы.
Источник
Методы измерений
Метод измерений – прием или совокупность приемов сравнения измеряемой величины с ее единицей или шкалой в соответствии с реализованным принципом измерений.
По общим приемам получения результатов измерений методы различают на:
- прямой метод измерений – измерение, при котором искомое значение величины находят непосредственно из опытных данных. Прямые измерения не требуют методики проведения измерений и проводятся по эксплуатационной документации на применяемое средство измерений;
- косвенный метод измерений – измерение, результат которого определяют на основании прямых измерений величин, связанных с измеряемой величиной известной зависимостью. Косвенные измерения применяются в случаях, когда невозможно выполнить прямые измерения, например при определении плотности твердого тела, вычисляемой по результатам измерений объема и массы.
По условиям измерения:
- контактный метод измерений – основан на том, что чувствительный элемент прибора приводится в контакт с объектом измерения (измерение температуры тела термометром);
- бесконтактный метод измерений – основан на том, что чувствительный элемент прибора не приводится в контакт с объектом измерения (измерение расстояния до объекта радиолокатором, измерение температуры в доменной печи пирометром).
Исходя из способа сравнения измеряемой величины с ее единицей, различают:
- метод непосредственной оценки – метод при котором значение величины определяют непосредственно по отсчетному устройству показывающего СИ (термометр, вольтметр и пр.). Мера, отражающая единицу измерения, в измерении не участвует. Ее роль играет в СИ шкала, проградуированная при его производстве с помощью достаточно точных СИ.
- метод сравнения с мерой – метод при котором измеряемую величину сравнивают с величиной, воспроизводимой мерой (измерение массы на рычажных весах с уравновешиванием гирями). Существует три разновидности этого метода:
- нулевой метод – метод сравнения с мерой, в котором результирующий эффект воздействия величин на прибор сравнения доводят до нуля, например, измерения электрического сопротивления мостом с полным его уравновешиванием;
- метод замещения – основан на сравнении с мерой, при котором измеряемую величину замещают измвестной величиной, воспроизводимой мерой, сохраняя все условия неизменными, например взвешивание c поочередным помещением измеряемой массы и гирь на одну и ту же чашку весов;
- метод совпадений – метод сравнения с мерой, в котором разность между значениями искомой и воспроизводимой мерой величин измеряют, используя совпадения отметок шкал или периодических сигналов, например при измерении с использованием штангенциркуляс нониусом наблюдают совпадение меток на шкалах штангенциркуля и нониуса;
- дифференциальный метод – метод измерений, при котором измеряемая величина сравнивается с однородной величиной, имеющей известное значение, незначительно отличающееся от значения измеряемой величины, и при котором измеряется разность между этими двумя величинами.
- метод совпадений – метод измерений, при котором определяют разность между измеряемой величиной и величиной воспроизводимой мерой, используя совпадение отметок шкал или периодических сигналов. Примером этого метода является измерение длины при помощи штангенциркуля с нониусом. Метод совпадений часто применяется при измерениях параметров периодических процессов.
Поскольку погрешность определяется не только метрологическими характеристиками средств измерений, но и погрешностью отбора и приготовления проб, условиями проведения измерений, ошибкой оператора и другими причинами, это определение означает, что методики выполнения измерений могут разрабатываться и быть аттестованными только применительно к конкретным условиям проведения измерения с использованием конкретных средств.
Данное утверждение не означает, что для каждой измерительной или испытательной лаборатории должны разрабатываться собственные методики. Но если лаборатория использует тип средства измерения, приведенный в аттестованной методике, влияющие факторы (температура и влажность окружающего воздуха и измеряемой среды, напряжение и частота электрической сети, вибрация, внешнее магнитное поле и др.) находятся в определенном данной методикой диапазоне, а оператор соответствует установленной в ней квалификации, то физические величины будут измеряться в этой лаборатории с известной погрешностью.
Источник