- § 2.4. Сила
- Смысл введения понятия «сила»
- Понятие силы относится к двум телам
- Сила имеет направление
- Сравнение сил
- Измерение сил
- Динамометр
- Геометрическое сложение сил
- О силах в механике
- Методы измерения силы
- Разработка метода для измерения силы с помощью индуктивного преобразователя. Характеристики и принцип действия измерительного устройства; чувствительность, измерительные цепи. Расчет параметров преобразователя, мостовой схемы, определение погрешности.
- Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
§ 2.4. Сила
Смысл введения понятия «сила»
Количественную меру действия тел друг на друга, в результате которого тела получают ускорения, называют в механике силой.
Это пока еще качественное, недостаточное для такой точной науки, как физика, определение. Введя его, мы разделили главное утверждение механики на два:
- ускорение тел вызывается силами;
- силы обусловлены действиями на данное тело каких-либо других тел.
Это разделение задачи о нахождении ускорения данного тела в зависимости от действия на данное тело других тел на две отдельные задачи существенно облегчает исследование. Связи между ускорениями и силами, с одной стороны, и между силами и конфигурацией тел, а также их относительными скоростями — с другой, более прозрачны, чем связи ускорений непосредственно с конфигурацией тел и их скоростями.
Понятие силы относится к двум телам
С самого начала нужно отчетливо представлять себе, что понятие силы относится к двум телам, а не к одному и не к многим. Всегда можно указать тело, на которое действует сила, и тело, со стороны которого она действует. Так, сила тяжести действует на камень со стороны Земли, а на шарик, прикрепленный к растянутой пружине, действует сила упругости со стороны пружины.
Сила имеет направление
Сила упругости растянутой пружины действует вдоль ее оси. Вы сами можете подействовать на лежащую на столе книгу мускульной силой в любом направлении. Это дает основание предположить, что сила является векторной величиной (т. е. характеризуется модулем и направлением). В дальнейшем это утверждение будет обосновано.
Сравнение сил
Для количественного определения силы мы должны уметь ее измерять. Только после этого можно говорить о силе как об определенной физической величине.
Но ведь действия на данное тело могут быть самыми разнообразными. Что общего, казалось бы, между силой притяжения Земли к Солнцу и силой, которая, преодолевая тяготение, заставляет двигаться ракету, или между этими двумя силами и обычной мускульной силой? Ведь они совершенно различны по своей природе. Можно ли говорить о них как о чем-то физически родственном? Можно ли сравнивать их?
Когда человек не может поднять тяжелую вещь, он говорит: «Не хватает сил». При этом, в сущности, происходит сравнение двух совершенно разных по природе сил: мускульной силы и силы, с которой Земля притягивает этот предмет. Но если вы подняли тяжелый предмет и держите его на весу, то ничто не мешает вам утверждать, что мускульная сила ваших рук по модулю равна силе тяжести. Это утверждение, по существу, и является определением равенства сил в механике.
Две силы, независимо от их природы, считаются равными по модулю и противоположно направленными, если их одновременное действие на тело не меняет его скорость (т. е. не сообщает телу ускорения).
Это определение позволяет измерять силы, если одну из них принять за единицу.
Измерение сил
Для измерения сил надо располагать эталоном единицы силы.
В качестве эталона единицы силы выберем силу 0, с которой некоторая определенная (эталонная) пружина при фиксированном растяжении действует на прикрепленное к ней тело (рис. 2.8). Сила упругости пружины направлена вдоль оси пружины. (Необязательно брать именно пружину; можно использовать любое упругое тело, деформацию которого легко измерить.)
Теперь установим способ сравнения сил с эталонной силой.
Мы уже говорили, что две силы считаются равными по модулю и противоположными по направлению, если при одновременном действии они не сообщают телу ускорения. Следовательно, измеряемая сила равна по модулю эталонной силе
0 и направлена в противоположную сторону, если под действием этих сил тело не получает ускорения (рис. 2.9). Причем сила
может быть любой природы: силой упругости другой пружины, силой трения, мускульной силой и т. д.
При действии по одному направлению двух сил 0 (рис. 2.10) будем считать, что измеряемая сила F, направленная в противоположную сторону, по модулю равна 2
0, если все три силы, действуя одновременно на тело, не сообщают ему ускорения.
Таким образом, располагая эталоном силы, можно измерять силы, кратные эталону. Процедура измерения состоит в следующем: к телу, на которое действует измеряемая сила, прикладывают в сторону, противоположную ее направлению, такое количество эталонных сил, чтобы тело не получило ускорения, и подсчитывают число эталонных сил. Естественно, что при этом ошибка в измерении произвольной силы будет такой же, как сама эталонная сила 0. Выбрав эталонную силу достаточно малой, можно в принципе проводить измерения с требуемой точностью.
Динамометр
На практике для измерения сил применяют одну пружину, проградуированную на различные значения силы, — динамометр (рис. 2.11). Использование динамометра основано на том факте, что сила упругости пружины в определенных пределах прямо пропорциональна ее деформации. Поэтому по длине растянутой пружины можно непосредственно судить о значении силы.
Геометрическое сложение сил
Располагая методом измерения сил, можно опытным путем доказать, что силы складываются, как векторы. Именно это дает основание считать силу, подобно скорости и ускорению, векторной величиной.
Один из простых опытов, доказывающих, что силы надо складывать векторно, можно осуществить так.
Нужно взять три нити и связать их концы узлом. На свободных концах нитей сделать петли и надеть их на крючки трех динамометров. После этого все три динамометра укрепить на доске гвоздями так, чтобы их пружины были растянуты (рис. 2.12, а). На узел О будут действовать со стороны динамометров три силы 1,
2 и
3, значения которых определяются показаниями динамометров. На листе бумаги, закрепленном на доске, надо отметить положение узла О, направления всех трех нитей и значения сил в произвольном масштабе.
После этого динамометр 2 отцепляется, а динамометр 1 снимается с гвоздя и закрепляется в новом положении так, чтобы узел О остался на прежнем месте, а направление нити, прикрепленной к динамометру 3, и его показания не изменились (рис. 2.12, б). Показание динамометра 1 будет, очевидно, совпадать с показанием динамометра 3, так как узел О находится в равновесии.
Можно утверждать, что пружина динамометра 1 в новом положении оказывает на узел О точно такое же действие, как и два динамометра 1 и 2 при начальном расположении динамометров. Это означает, что сила 4 по своему действию эквивалентна силам
1 и
2 и является их равнодействующей.
Отметим на бумаге направление силы 4 и ее значение в том же масштабе, что и раньше. Сняв динамометры с доски, соединим концы отрезков, изображающих силы
1,
2 и
4. Получится параллелограмм, показанный на рисунке 2.12, в.
Можно повторить опыт, меняя расположения динамометров и растяжения их пружин. Во всех случаях полученная при аналогичных построениях фигура будет представлять собой параллелограмм. В частности, если 1 = 3 ед.,
2 = 4 ед., то
4 =
4 = 5 ед. При этом нити 1 и 2 образуют прямой угол. Согласно теореме Пифагора
как это и получается экспериментально.
Итак, сила 4, эквивалентная силам
1 и
2, является диагональю параллелограмма, стороны которого изображают силы
1 и
2. Следовательно, силы складываются, как векторы. По этой причине, рассказывая о способах измерения сил, мы применяли для них векторные обозначения.
О силах в механике
Нам еще предстоит в дальнейшем довольно обстоятельный разговор о силах. Пока же ограничимся несколькими замечаниями.
В механике не рассматривается природа тех или иных сил. Не делается попыток выяснить, вследствие каких физических процессов появляются те или иные силы. Это задача других разделов физики.
В механике важно лишь знать, при каких условиях возникают силы и каковы их модули и направления, т. е. знать, как силы зависят от расстояний между телами и от скоростей их движения. А узнать значения сил, определить, когда и как они действуют, можно, не вникая в природу сил, а лишь располагая способами их измерения.
В механике в первую очередь имеют дело с тремя видами сил: гравитационными силами, силами упругости и силами трения. Модули и направления этих сил определяются опытным путем. Важно, что все рассматриваемые в механике силы зависят либо только от расстояний между телами или частями одного тела (гравитация и упругость), либо только от относительных скоростей тел (трение).
Дано определение силы и указан метод ее измерения. Доказано, что силы складываются как векторы.
Источник
Методы измерения силы
Разработка метода для измерения силы с помощью индуктивного преобразователя. Характеристики и принцип действия измерительного устройства; чувствительность, измерительные цепи. Расчет параметров преобразователя, мостовой схемы, определение погрешности.
Рубрика | Физика и энергетика |
Вид | курсовая работа |
Язык | русский |
Дата добавления | 10.05.2017 |
Размер файла | 1,9 M |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Размещено на http://www.Allbest.ru/
1. Общие сведения об измеряемой величине
2. Обзор методов измеряемой величины
3. Описание индуктивного преобразователя
3.1 Погрешности индуктивных преобразователей
3.2 Измерительные цепи индуктивных преобразователей
4. Расчет основных параметров преобразователя
5. Расчет мостовой схемы
6. Определение погрешности индуктивного преобразователя
Измерительные преобразователи представляют собой технические устройства, которые осуществляют преобразования величин и образуют канал передачи измерительной информации. При описании принципа действия измерительного устройства, включающего последовательный ряд измерительных преобразователей, часто представляют его в виде функциональной блок-схемы (измерительной цепи), на которой отражают функции отдельных его частей в виде символических блоков, связанных между собой.
Основные характеристики измерительного преобразователя — это функция преобразования, чувствительность, погрешность.
Измерительные преобразователи можно условно разбить на три класса: пропорциональные, функциональные и операционные.
Пропорциональные предназначены для подобного воспроизведения входного сигнала в выходном сигнале. Вторые — для вычисления некоторой функции от входного сигнала; третьи — для получения выходного сигнала, являющегося решением некоторого дифференциального уравнения. Операционные преобразователи являются инерционными, так как у них значение выходного сигнала в любой момент времени зависит не только от значения входного в тот же момент времени. Но и от его значений в предшествующие моменты времени.
При проектировании специализированного нестандартного средства измерения следует учитывать существенные организационно-технические формы контроля, масштаб производства, характеристики измеряемых объектов, требуемую точность измерения и другие технико-экономические факторы.
В нашем случае производится проектирование только преобразователя и поэтому частью этих факторов можно пренебречь. Нам важна только требуемая точность измерения заданного параметра. Любая измерительная задача начинается с выбора первичного преобразователя — «датчика», способного преобразовать исходную информацию (любой вид деформации, кинематический параметр движения, температурные изменения и пр.) в сигнал, подлежащий последующему исследованию. Первичный преобразователь является начальным звеном измерительной системы. Преобразователем в данной курсовой работе является индуктивный преобразователь.
Сила — векторная физическая величина, являющаяся мерой интенсивности воздействия на данное тело других тел, а также полей. Приложенная к массивному телу сила является причиной изменения его скорости или возникновения в нём деформаций и напряжений.
Сила как векторная величина характеризуется модулем, направлением и точкой приложения силы. Также используется понятие линия действия силы, обозначающее проходящую через точку приложения силы прямую, вдоль которой направлена сила.
За единицу силы в СИ принят ньютон (Н). Ньютон — это сила, которая придает массе 1 кг в направлении действия этой силы ускорение 1 м/с 2 .
В технических измерениях допускаются единицы силы:
· 1 кгс (килограмм-сила) = 9,81 Н;
· 1 тc (тонна-сила) = 9,81 х 103 Н.
Силу измеряют посредством динамометров, силоизмерительных машин и прессов, а также нагружением при помощи грузов и гирь.
Динамометры — приборы, измеряющие силу упругости.
Динамометры бывают трёх типов:
По способу регистрации измеряемых усилий динамометры подразделяют на:
· указывающие — применяют главным образом для измерений статических усилий, возникающих в конструкциях, установленных на стендах, при приложении к ним внешних сил и для измерения силы тяги при плавном передвижении изделия;
· считающие и пишущие динамометры, регистрирующие переменные усилия, применяют чаще всего при определении силы тяги паровозов и тракторов, так как вследствие сильной тряски и неизбежных рывков при ускорении их движения, а также неравномерности загрузок изделия создаются переменные усилия.
Наибольшее распространение имеют динамометры общего назначения пружинные, указывающие.
Основные параметры и размеры динамометров общего назначения, пружинных со шкальным отсчётным устройством, предназначенных для измерений статических растягивающих усилий, устанавливает ГОСТ 13837.
Пределы измерений и погрешность динамометра должны определяться одним из двух способов:
· по таблицам ОСТ 1 00380.
Рабочие средства измерений, применяемые в силоизмерительных системах, приведены в ОСТ 1 00380.
Существуют различные виды сил: гравитационные, электромагнитные, реактивные, ядерные, слабого взаимодействия, сила инерции, сила трения и другие. Силы необходимо измерять в широком диапазоне — от 10 -12 Н (Ван-дер — Ваальсовы силы) до 10Н (силы удара, тяги). С малыми силами имеют дело при научных исследованиях, при испытании точных датчиков силы в системах управления и др. Силы от 1Н до 1МН характерны для испытательной техники и при определении усилий в транспортных средствах, прокатных станках и другое. В некоторых областях машиностроения, сталепрокатной и аэрокосмической технике необходимо измерять силы до 50-100 МН. Погрешности измерений силы и моментов при технических измерениях составляют 1—2%. К измерению силы сводится измерение таких физических величин, как давление, ускорение, масса, погрешность измерения которых во многих случаях не должна превышать 0,001%.
В современной технике широко применяются измерения неэлектрических величин (температуры, давления, усилий и пр.) электрическими методами. В большинстве случаев такие измерения сводятся к тому, что неэлектрическая величина преобразуется в зависимую от нее электрическую величину (например, сопротивление, ток, напряжение, индуктивность, емкость и пр.), измеряя которую, получают возможность определить искомую неэлектрическую величину.
Устройство, осуществляющее преобразование неэлектрической величины в электрическую, называется датчиком. Датчики делятся на две основные группы: параметрические и генераторные. В параметрических датчиках неэлектрическая величина вызывает изменение какого-либо электрического или магнитного параметра: сопротивления, индуктивности, емкости, магнитной проницаемости и пр. В зависимости от принципа действия эти датчики подразделяются на датчики сопротивления, индуктивные, емкостные и др.
Устройства для измерения различных неэлектрических величин электрическими методами широко применяют на э.п.с. и тепловозах. Такие устройства состоят из датчиков, какого-либо электроизмерительного прибора (гальванометра, милливольтметра, миллиамперметра, логометра и т.д.) и промежуточного звена, которое может включать в себя электрический мост, усилитель, выпрямитель, стабилизатор и др.
Изменение силы методом уравновешивания
Метод основан на уравновешивании измеряемой силы силой, создаваемой обратным электромеханическим преобразователем, чаще всего магнитоэлектрическим, а также силой реакции, возникающей в динамической системе. К таким силам относятся центростремительная сила, сила инерции при колебательном движении, гироскопический момент.
Перспективным способом создания высокоточных средств измерений больших сил (от 105Н и более) является применение электродинамических обратных преобразователей силы со сверхпроводящими обмотками, которые позволяют воспроизводить силы до 107-108Н с погрешностью 0,02-0,05%.
Гироскопический метод измерения сил основан на измерении угловой скорости прецессии рамки гироскопа, возникающей под воздействием гироскопического момента, уравновешивающего измеряемый момент или момент, создаваемый измеряемой силой. Этот метод нашел применение в весоизмерительной технике.
Сила реакции однозначно определяется геометрией системы, массами клиньев и частотой их вращения. Таким образом, при неизменных параметрах измерительного устройства измеряемая сила Fx определяется по частоте вращения двигателя.
Основан на зависимости силы или момента сил, развиваемых неупругим или упругим чувствительным элементом, от приложенного давления. По этому методу строятся две разновидности приборов и датчиков давления:
— силовые датчики прямого преобразования, в которых развиваемая чувствительным элементом сила преобразуется с помощью электрического преобразователя в электрическую величину
— приборы и датчики с силовой компенсацией, в которых сила, развиваемая чувствительным элементом, уравновешивается силой, создаваемой компенсирующим элементом. В зависимости от типа компенсирующего устройства выходным сигналом может служить сила тока, линейное или угловое перемещение.
Измерение силы, механических напряжений
Датчики силы можно разделить на два класса: количественные и качественные.
Количественные датчики измеряют силу и представляют ее значение в электрических единицах. Примерами таких датчиков являются динамометрические элементы и тензодатчики.
Качественные датчики — это пороговые устройства, чья функция заключается не в количественном определении значения силы, а в детектировании превышения заданного уровня приложенной силы. То есть, в первом случае речь идет об измерении, а во втором случае — о контроле силы или механических напряжений. Примерами таких устройств являются, например, тензодатчики и клавиатура компьютера. Качественные датчики часто используют для детектирования движения и положения объектов.
Методы измерения силы можно разделить на следующие группы:
* уравновешивание неизвестной силы силой тяжести тела известной массы;
* измерение ускорения тела известной массы, к которому приложено усилие;
* уравновешивание неизвестной силы электромагнитным усилием;
* преобразование силы в давление жидкости и измерение этого давления;
* измерение деформации упругого элемента системы, вызванной неизвестной силой.
В большинстве датчиков не происходит прямого преобразования силы в электрический сигнал. Для этого обычно требуется несколько промежуточных этапов. Поэтому, как правило, датчики силы являются составными устройствами. Например, датчик силы часто представляет собой комбинацию преобразователя силы в перемещение и детектора положения (перемещения). Принципы построения весов сводятся к измерению силы. Приложенная сила воздействует на первичный преобразователь (датчик), состоящий из упругого элемента и преобразователя деформации, механически связанного с упругим элементом и преобразующим эту деформацию в электрический сигнал.
В настоящее время в весовой технике нашли применение следующие типы преобразователей:
1. Реостатные преобразователи. Работа их основана на изменении сопротивления реостата, движок которого перемещается под воздействием силы.
2. Проволочные преобразователи (тензосопротивления). Работа их основана на изменении сопротивления проволоки при ее деформации.
4. Индуктивные преобразователи. Изменение индуктивности преобразователя от изменения положения одной из его частей под действием измеряемой величины. используется для измерения силы, давления, линейного перемещения детали.
5. Емкостные преобразователи. Изменение емкости преобразователя под действием измеряемой неэлектрической величины: силы, давления линейного или углового перемещения, содержания влаги и т.д.
Генераторные преобразователи по принципу работы делятся на группы:
1. Индукционные преобразователи. Работа их основана на преобразовании измеряемой неэлектрической величины, например скорости, линейных или угловых перемещений, в индуктированную э.д.с.
3. Пьезоэлектрические преобразователи. Пьезоэлектрический эффект, т.е. возникновение э.д.с. в некоторых кристаллах под действием механических сил, используется для измерения этих сил, давления и других величин.
В технических и научных измерениях неэлектрических величин широко используются индуктивные преобразователи, относящиеся к группе параметрических датчиков. Они отличаются конструктивной простотой, надежностью и малой стоимостью. К тому же для своей работы они не требуют сложного вторичного оборудования.
Индуктивный преобразователь представляет собой дроссель, индуктивность которого изменяется под действием входной (измеряемой) величины. В измерительной технике используются конструкции преобразователя с переменным воздушным зазором и соленоидные (или плунжерные) преобразователи, которые и изучаются в данной работе.
Индуктивный преобразователь с переменным воздушным зазором схематически показан на рис. 1. Он состоит из П-образного магнитопровода 1, на котором размещена катушка 2, и подвижного якоря 3. При перемещении якоря изменяется длина воздушного зазора и, следовательно, магнитное сопротивление. Это вызывает изменение магнитного сопротивления и индуктивности преобразователя L. При некоторых допущениях индуктивность преобразователя можно рассчитать по формуле (1):
Рис. 1. Конструкция индуктивного преобразователя с переменным воздушным зазором (1- П-образный магнитопровод, 2- катушка, 3- якорь): а) одинарный преобразователь; б) дифференциальный преобразователь
где w — число витков катушки, µо = 4 10 7 Гн/м — магнитная постоянная, µ — магнитная постоянная стали, — площадь сечения магнитного потока в воздушном зазоре, — средняя длина магнитной силовой линии по стали.
Одинарные индуктивные преобразователи имеют ряд недостатков, в частности их функция преобразования нелинейная, они могут иметь большую аддитивную погрешность, вызванную температурным изменением активного сопротивления обмотки, и ряд других.
Этих недостатков лишены дифференциальные преобразователи, которые представляют собой два одинарных преобразователя, имеющих общий якорь. На рис. 1б показан дифференциальный индуктивный преобразователь, состоящий из двух преобразователей, показанных на рис. 1а.
При перемещении якоря, например, влево, индуктивность L, возрастает, а другая индуктивность L2 уменьшается.
Рис. 2. Конструкция индуктивного плунжерного преобразователя (1 — катушка, 2 — плунжер): а) одинарный преобразователь; б) дифференциальный преобразователь
Другой разновидностью индуктивных преобразователей являются плунжерные преобразователи. На рис. 2а показан одинарный плунжерный преобразователь, который представляет собой катушку 1, из которой может выдвигаться ферримагнитный сердечник 2 (плунжер). При среднем положении плунжера индуктивность максимальна.
Дифференциальный преобразователь, состоящий из двух одинарных преобразователей плунжерного типа, схематически изображен на рис. 2б. 3десь также при перемещении плунжера одна индуктивность уменьшается, а другая увеличивается.
При использовании индуктивных преобразователей в качестве выходной величины обычно используется не индуктивность как таковая, а реактивное сопротивление преобразователя Z, которое, если пренебречь активной составляющей, равно Z = jwL.
3.1 Погрешности индуктивных преобразователей
Погрешности индуктивных преобразователей в основном обусловлены изменением активной составляющей их сопротивлений. Эта погрешность аддитивна и уменьшается в случае применения мостовых схем. Кроме того, при изменении температуры изменяется магнитная проницаемость стали, что приводит к дополнительному изменению аддитивной и мультипликативной погрешностей. Изменения напряжения питания и его частоты также служат причиной изменения чувствительности и появления мультипликативных погрешностей.
Среди погрешностей индуктивных датчиков можно выделить следующие:
1.1) Погрешность, обусловленная температурным режимом. Эта погрешность относится к случайным и должна подлежать оценке перед тем, как датчик начнёт работать. Погрешность происходит из-за того, что определённые параметры составных частей датчика зависят от температуры и при довольно сильном отклонении от нормы в ту или иную сторону, погрешность может быть весьма внушительной.
1.2) Погрешность, обусловленная действием силы притяжения якоря
1.3) Погрешность линейности функции преобразования
При работе индуктивных преобразователей в мостовых схемах возникает погрешность обусловленная нестабильностью напряжения и частоты питания моста, а также изменением формы кривой питающего напряжения. Для улучшения свойств индуктивных ИП используются дифференциальные преобразователи (их конструкция указана на рис. 1б) Дифференциальные преобразователи позволяют существенно уменьшить погрешности, повысить чувствительность и увеличить линейный участок характеристики.
3.2 Измерительные цепи индуктивных преобразователей
Мосты для измерения индуктивности и добротности катушек индуктивности. Катушка индуктивности, параметры которой измеряются, включается в одно из плеч четырехплечего моста, например в первое плечо:
Чтобы мост можно было уравновесить, по крайней мере, одно из оставшихся плеч должно содержать реактивность в виде индуктивности или емкости.
Предпочтение отдают емкости, т.к. катушки индуктивности по точности изготовления уступают конденсаторам, а стоят значительно дороже. Схема такого моста показана на рис. 3
Рис. 3. Мост для измерения параметров катушек индуктивности
При равновесии моста, согласно общему уравнению равновесия, справедливо. Приравняв отдельно действительные и мнимые части, получим два условия равновесия:
Уравновешивается такой мост регулировкой и. Значение пропорционально индуктивности, а — добротности измеряемой катушки. Недостаток рассмотренной схемы — плохая сходимость моста при измерении параметров катушек с низкой добротностью. Если Q = 1, процесс уравновешивания уже затруднен, а при Q
Источник