Способ измерения шероховатости поверхности
Методика измерения шероховатости и волнистости
Общие положения и определения. Поверхность обработанной детали не является идеально ровной и геометрически правильной. Она отличается от номинальной (заданной чертежом) микро- и макрогеометрическими отклонениями. Микрогеометрические отклонения определяют шероховатость поверхности, макрогеометрические — характеризуют волнистость и отклонения формы. Между этими видами погрешностей нет четкого физического различия, однако условно их можно разделить по отношению шага S к значению отклонения D от номинального контура. Неровности, для которых отношение S / D S / D > 40 — к волнистости, при S / D > 1000 — к отклонениям формы.
Шероховатость поверхностей регламентируется ГОСТ 2789-73 и соответствующими рекомендациями.
Шероховатость поверхности при обработке заготовки детали зависит от многих технологических факторов: режимов обработки (скорости резания, подачи); геометрии (переднего и заднего углов), материала и качества поверхности инструмента; механических свойств, химического состава и структуры материала заготовки; состава смазывающе-охлаждающей жидкости; жесткости системы СПИД и др. В то же время шероховатость поверхностей в значительной степени определяет основные эксплуатационные свойства деталей и узлов — износостойкость, сопротивление усталости, надежность посадок, контактную жесткость и теплопроводность стыков сопряженных деталей, коррозионную стойкость, герметичность соединений, отражающую и поглощающую способность поверхностей и др. Поэтому характеристики шероховатости поверхности строго нормируются и подвергаются постоянному анализу в технологических исследованиях и контролю в процессе производства.
Оценка точности результатов измерений микронеровностей поверхностей производится общепринятыми в метрологии методами. Однако при оценке шероховатости поверхности возникают и некоторые специфические метрологические проблемы.
Чертежом, как правило, задаются требования к шероховатости всей рабочей поверхности детали. Контроль соблюдения этих требований осуществляется обычно по некоторому числу профилей ограниченной длины. При этом возникают вопросы: какой длины должен быть каждый обследуемый профиль, т.е. участок измерения; сколько должно обследоваться таких участков; какие участки выбирать для измерений, чтобы оценить качество поверхности в целом.
Оценку шероховатости поверхности можно производить комплексно (путем сравнения с эталонной поверхностью или другими способами) либо поэлементно, измеряя отдельные параметры шероховатости поверхности. Поскольку в технологических исследованиях поэлементная оценка шероховатости более распространена, рассмотрим некоторые из указанных методов.
Оптические методы измерения шероховатости . Измерение параметров шероховатости оптическими приборами производится бесконтактными методами, среди которых наибольшее распространение получили методы светового сечения, теневого сечения, микроинтерференционные, с применением растров.
Метод светового сечения заключается в следующем: пучок световых лучей, поступающих от источника света через узкую щель 3 (рис.1.1, а) шириной около 0,1 мм, направляется объективом 2 под углом a на контролируемую поверхность 1. Отражаясь от этой поверхности, лучи через объектив 5 переносят изображение щели в плоскость фокуса окуляра 6. Если контролируемая поверхность является идеально ровной, то в окуляре щель будет иметь вид светящейся прямой линии (обычно зеленого цвета). Если на поверхности имеется канавка, то в плоскости окуляра наблюдается искривленная светящаяся линия (рис.1.1, б). При глубине канавки, равной Н, ее световое сечение b = H / sin a , размер же светового сечения канавки в плоскости объектива b 1 = bV x , где V х — увеличение объектива микроскопа.
Р исунок 1.1 — Схема для определения шероховатости методом светового сечения
Измерение b 1 осуществляется с помощью окулярного микрометра, перекрестие которого перемещается на угол b =45° и при этом оценивается b 2 . Если пучок световых лучей направить на контрольную поверхность под углом a =45°, то b 2 = b 1 / sin b = H /( sin aЧ sin b ) Ч V x , откуда Н = b 2 /(2 V x ).
Если на расстоянии 0,1 мм от контролируемой поверхности установить линейку 4 со скошенным ребром, то последнее срежет часть пучка света, и на контролируемой поверхности будет видна тень, отбрасываемая линейкой. Верхний край тени, являющийся как бы лезвием ножа, отражает профиль изучаемой поверхности, который и рассматривают в микроскоп (метод теневого сечения).
По принципу светового сечения работают двойной микроскоп МИС-11 и прибор ПСС-2, по принципу теневого сечения – прибор ПТС-1. Эти приборы позволяют измерять неровности поверхности высотой от 0,8 до 63 мкм при погрешности показаний от 24 до 7,5% при наличии четырех пар сменных объективов ОС-39, ОС-40, ОС-41, ОС-42. Прибор ПСС-2 представляет собой усовершенствованную модель ранее выпускающегося прибора МИС-11. Поле зрения у прибора ПСС-2 при работе со всеми объективами соответствует базовым длинам участков измерений по ГОСТ 2789-73. Оба прибора позволяют определять параметры Rz, Rmax и S, а также фотографировать микронеровности.
Прибор ПТС-1 применяется для оценки параметров шероховатости грубо обработанных поверхностей с высотой неровностей Rz от 320 до 80 мкм. Прибор накладной, что позволяет контролировать детали без снятия их со станка.
Микроинтерференционный метод реализуется с помощью приборов МИИ-4, МИИ-5, МИИ-15, МИИ-9, МИИ-10, предназначенных для лабораторных измерений параметров Rz и S и фотографирования микронеровностей чистых поверхностей с Rz = 0,03. 1 мкм. Принцип устройства микроинтерферометра В.П. Линника – сочетание интерферометра Майкельсона с измерительным микроскопом, что позволяет в поле зрения микроскопа увеличенное в нужное число раз изображение интерференционной картины и измерять координатным методом вырисовывающиеся неровности с помощью обычного винтового окулярного микрометра. В местах выступов и впадин на исследуемой поверхности интерференционные полосы искривляются. Степень искривления полос и характеризует неровность поверхности.
На рис.1.2 приведена интерферограмма поверхности, сфотографированная на МИИ.
Рис.1.2 – Схема искривления интерференционных полос
Каждая интерференционная полоса на ней представляет собой изображение полосы профиля поверхности. Высоты микронеровностей (мкм) определяют путем измерения искривления интерференционной полосы а по отношению к интервалу полос b (рис.1.3): R =a /b Ч l /2=0,275a/b ( l — длина световой волны; наиболее часто l =0,55 мкм). В тех случаях, когда необходима определить и шаг неровностей, его подсчитывают по формуле S =2a tg ( a /2) , где a — угол профиля, измеряемый при помощи окулярного микровинта.
Рис.1.3 – Схема для измерения параметров шероховатости по интерферограмме
Идея растрового метода заключается в следующем. Если на испытываемую поверхность наложить стеклянную пластинку, на которую нанесены с малым шагом штрихи (растровая сетка), при наклонном падении лучей отраженная растровая сетка накладывается на штрихи самой сетки и наблюдаются муаровые полосы. На основе этого явления предложена методика измерения высот неровностей поверхностей с помощью растрового микроскопа. Растровый измерительный микроскоп ОРИМ-1 предназначен для измерения высоты неровностей (от 0,4 до 40 мкм) наружных поверхностей деталей со следами обработки, имеющими определенное преимущественное направление.
При оценке шероховатости поверхностей сложной формы и в случае трудного доступа к исследуемой поверхности применяют так называемый метод слепков, заключающийся в снятии копий (как правило, «негативных») поверхностей для последующего измерения по ним высоты неровностей. Неровности на слепках можно измерять как с помощью оптических, так и щуповых приборов. В частности, для этого используют приборы МИС-11, ПСС-2, электромеханические профилографы-профилометры. Материалы для изготовления слепков – легкоплавкие сплавы; воск; целлулоид; гипс; масляная гуттаперча; парафин; кинопленка, растворенная в ацетоне, и др. Наилучшим из них является масляно-гуттаперчевая масса.
Щуповой метод измерения параметров шероховатости . При щуповом (контактном) методе измерения неровностей поверхности в качестве щупа используют остро заточенную иглу, поступательно перемещающуюся по определенной трассе относительно поверхности. Ось иглы располагают по нормали к поверхности. Опускаясь во впадины, а затем поднимаясь на выступы во время движения ощупывающей головки по испытуемой поверхности, игла колеблется относительно головки соответственно огибаемому профилю. Механические колебания иглы преобразуются, как правило, в электрические при помощи электромеханического преобразователя того или иного типа. Снятый с преобразователя полезный сигнал усиливают, а затем измеряют его параметры, характеризующие неровности исследуемой поверхности (профилометрирование), или записывают параметры профиля поверхности в заранее выбранных вертикальном и горизонтальном масштабах (профилографирование).
Щуповые электромеханические приборы, предназначенные для измерений параметров шероховатости поверхности, называют профилометрами, а такие же приборы для записи неровностей поверхности — профилографами. Профило-графы позволяют не только записывать профиль поверхности, но и измерять параметры шероховатости. Поэтому их называют профилографами-профилометрами.
В щуповых приборах для измерения параметров шероховатости поверхности применяются индукционные, индуктивные, электронные и пьезоэлектрические преобразователя механических колебаний иглы в электрические сигналы.
Ранее в электромеханических щуповых приборах использовались индукционные преобразователи, в витках катушки которых наводилась электродвижущая сила при перемещении в поле постоянного магнита катушки под действием измерительной иглы (в США — прибор Аббота, в СССР — КВ-7). Теперь преимущественное распространение получили индуктивные преобразователи (приборы моделей 201, 202, 240 и 252 в СССР, «Телисурф-4», «Телисурф-10» в Англии, «Перт-о-метр-34В» в ФРГ, «Профикордер» в США и др.).
Рис.1.4 – Электрическая схема профилометра-профилографа мод. 201
Принцип действия индуктивного преобразователя рассмотрим на примере профилографа-профилометра модели 201. Электрическая часть прибора (рис.1.4) включает в себя электронный блок 7, показывающий 8 и записывающий 9 приборы. Магнитная система датчика представляет сердечник 2 с двумя катушками 1. Катушка датчика и две половины первичной обмотки дифференциального входного трансформатора 6 образуют балансный мост, который питается от генератора звуковой частоты 5. При перемещении датчика относительно исследуемой поверхности алмазная игла 4, ощупывая неровности поверхности, приводит в колебательное движение коромысло 3. При этом меняются воздушные зазоры между якорем и сердечником, а следовательно, и напряжение на выходе дифференциального трансформатора. Оно усиливается электронным блоком 7, на выходе которого подключены записывающий или показывающий приборы.
Электронный механотронный преобразователь представляет собой электронную лампу с подвижным электродом (обычно анодом), на выведенном из баллона конце которого укреплена ощупывающая исследуемую поверхность игла.
В ряде конструкций щуповых приборов («Брюэль и Кьер» в Дании, «Филлипс» в Голландии, «Тейлор-Гобсон-105» в Англии, «Швистул» в Швейцарии, «Хоммель-Тестер-Р» в ФРГ, «Сурфком-1» в Японии, ДБ-1 в СССР и др.) применяются пьезоэлектрические преобразователи. Пьезо-преобразователь выполняют в виде элемента, склеенного из двух пластин пьезоэлектрика (титанат бария, титанат циркония, сегнетова соль и др.) и имеющего на конце иглу. Нормальные к исследуемой поверхности смещения иглы вызывают деформацию элемента, а вследствие асимметрии кристаллической структуры пьезоэлектрика — пропорциональное этой деформации напряжение на выходе преобразователя.
Точность, размеры и технические условия эксплуатации профилографов-профилометров регламентированы ГОСТ 19299 -73 и ГОСТ 19300 — 73. Проверяются профилографы согласно ГОСТ 8.241 — 77 и ГОСТ 8.242 — 77.
В настоящее время в технологических лабораториях чаще всего используются профилографы-профилометры блочной конструкции (модели 201). Прибор имеет малое измерительное усилие (не более 1 мН при градиенте усилия до 5 мкН/мкм), благодаря чему можно измерять параметры шероховатости деталей с покрытиями без их повреждения, деталей из цветных металлов, пластмасс и других неметаллических материалов. Прибор оценивает параметр шероховатости Ra в пределах от 0,04 до 8 мкм на базовых длинах от 0,08 до 2,5 мм и записывает профиль с высотой неровностей от 0,05 до 20 мкм на прямолинейных трассах поверхностей (плоскостей, образующих цилиндров, конусов и т.п.). Погрешность показаний прибора не превышает ±10%, а погрешность записи — ±4%. Он позволяет произвести запись профиля плоской и цилиндрической поверхностей вдоль образующей на длине до 40 мм; в отверстиях диаметром 8. 20 мм — на глубине до 10 мм, а в отверстиях диаметром 20. 45 мм — до 100 мм. Прибор снабжается приспособлением для записи волнистости поверхности. По профилограммам, записываемым на электротермической бумаге шириной 80 мм, можно определить все нормируемые ГОСТ 2789-73 параметры шероховатости поверхности указанных поверхностей.
Профилограф-профилометр модели 202 более универсален. Этот прибор укомплектован специальными устройствами, позволяющими записывать профиль и измерять параметр Ra и на криволинейных поверхностях с радиусом не менее 50 мм, шариках и роликах диаметром 1. 25 мм, зубьях зубчатых колес, в малых отверстиях диаметром не менее 3 мм на глубине до 5 мм.
Профилограф-профилометр модели 252 с цифровой индикацией результатов предназначен для измерения параметров шероховатости Ra (от 0,02 до 100 мкм), Н max и Н min (от 0,1 до 100 мкм), tp (90 — 100%), числа шагов Кр (до 1000) и для записи профиля на прямолинейных трассах поверхностей. Наименьший диаметр проверяемого отверстия составляет 3 мм при глубине до 5 мм.
Профилометр модели 240 — переносной прибор для оценки шероховатости поверхностей по параметру Ra (2,5. 0,025 мкм) в цеховых условиях.
Портативный профилометр модели 253 предназначен для измерения параметра Ra в цеховых условиях. Диапазон измерения Ra — от 0,04. 2,5 мкм на базовой длине 0,25; 0,8; 2,5 мм. В приборе использован механотронный преобразователь.
Разработана модель портативного переносного щупового прибора с индуктивным преобразователем. Прибор используется для измерения стандартных параметров шероховатости и записи профиля поверхности. Диапазон измерения высоты микронеровностей — 0,5. 400 мкм, базовые длины — 0,08. 25 мм, длины трасс ощупывания — 3. 100 мм, скорости трассирования — 3, 10, 30, 50, 100 мм/мин.
Промышленностью выпускаются щуповые приборы специального назначения, в частности для измерения параметров шероховатости поверхностей колец подшипников (модель 261 и др.).
К наиболее распространенным зарубежным профилографам-профилометрам принадлежат приборы «Телисурф» (Англия), «Перт-о-метр», «Перт-о-граф» (ФРГ), «Профикордер», профилометр фирмы Бендикс (США) и др.
Источник