- На каком расстоянии Луна от Земли и как было измерено это расстояние?
- Как измеряли расстояние до планет в древности?
- Как Гиппарх измерил расстояние до Луны?
- Как был измерен диаметр Луны
- Как рассчитать расстояние до Луны без телескопа и СМС-регистрации
- Измерить расстояние Земля-Луна с помощью лазера сложнее, чем вы думаете
- Как измерили расстояние от Земли до Луны?
На каком расстоянии Луна от Земли и как было измерено это расстояние?
Минимальное и максимальное расстояние между Землей и Луной, способы измерения расстояния до Луны и диаметра спутника нашей планеты
Как измеряли расстояние до планет в древности?
Представьте себя на месте человека не знакомого со строением Солнечной системы, наблюдающего за ночным небосводом. Звезды, сами по себе, вам представляются неподвижными объектами, но вот само звездное небо вроде как вращается, причем вращается вокруг Земли и совершает полный оборот за 24 часа.
Легко сделать вывод, располагая таким данными, что звезды “прикреплены” к небесному своду, представляющему собой своеобразное “покрывало”, окутывающее нашу планету со всех сторон. Это наблюдение очевидное и простое и потому, вплоть до самого XVII века – главенствующее и даже “научное”.
В то же время, уже в древности люди замечали, что некоторые небесные светила движутся среди звезд — а следовательно, эти светила не могли быть прикреплены к небесному своду и находились к Земле ближе, чем само небо. Насчитывалось семь таких небесных тел, называвшихся (в порядке их яркости) Солнце, Луна, Венера, Юпитер, Марс, Сатурн и Меркурий. Эти семь небесных тел греки называли «планетес» (скитальцы или “блуждающие звезды”), так мы до сих пор большинство из них и называем – «планеты».
Пропорции Земли и Луны – да, наш спутник не так уж и мал, всего в 4 раза уступая Земле по размеру. Впрочем, при этом он легче в 80 раз.
Дальнейшие наблюдения показали – можно установить, какие из планет находятся ближе к Земле, а какие — дальше от нее. Например, при каждом солнечном затмении Луна проходила между Землей и Солнцем и, следовательно, Луна была ближе к Земле, чем Солнце.
При оценке других расстояний древние исходили из относительной скорости движения планет среди звезд (чем ближе к нам предмет, тем более быстрым кажется его движение). Исходя из относительной скорости движения планет среди звезд, греки решили, что Луна расположена ближе к Земле, чем остальные планеты. Прочие же располагались в порядке увеличения расстояния так: Меркурий, Венера, Солнце, Марс, Юпитер и Сатурн.
Разумеется, в таком случае при определении расстояний от планет до Земли следовало начинать с ближайшего светила – то есть Луны.
Как Гиппарх измерил расстояние до Луны?
Первую серьезную попытку определить расстояние до Луны предпринял греческий астроном Аристарх Самосский (320—250 гг. до н. э.). Он опирался на наблюдения, сделанные во время лунного затмения. Когда тень Земли упала на Луну, по изгибу ее края можно было судить, как велико ее поперечное сечение по сравнению с размерами Луны.
Кажется, что Луна совсем близко от Земли. Вот так выглядит расстояние между Землей и Луной в натуральных пропорциях. 384 000 километров – не так и близко, а?
Считая, что Солнце находится от Земли гораздо дальше Луны, Аристарх с помощью несложных геометрических построении мог установить, как далеко должна Луна находиться от Земли, чтобы тень Земли уменьшалась до наблюдаемых размеров.
Этот метод был улучшен и дополнен примерно через 100 лет другим греческим астрономом — величайшим астрономом античности Гиппархом из Никеи (190— 120 гг. до н. э.). Гиппарх пришел к выводу, что расстояние от Земли до Луны примерно в 30 раз больше диаметра Земли. Если принять длину диаметра, предложенную Эратосфеном, т.е. 12 800 км, то в этом случае расстояние между Землей и Луной окажется равным 384 000 км.
Это блистательный результат, если учесть тогдашнее состояние астрономии. Наиболее точная современная цифра среднего расстояния между центрами Земли и Луны — 384 395 км. Не располагая и сотой долей тех возможностей, которыми располагает астрономия сейчас, Гиппарх из Никеи провел вычисления с погрешностью в 1/1000!
Как был измерен диаметр Луны
Конечно же, 384 395 километров – среднее расстояние между Землей и Луной, так как Луна движется вокруг Земли не по точному кругу: иногда она ближе к нашей планете, а иногда дальше.
Минимальное расстояние между Луной и Землей (в перигее) равно 363 300 км, а максимальное (в апогее) —405 500 км.
Зная это расстояние, можно вычислить истинный диаметр Луны, исходя из ее видимых размеров. Он равен 3473,4 км, а окружность Луны, следовательно, составляет 10 900 км. Луна намного меньше Земли, но все же ее размеры весьма внушительны.
После того как было определено расстояние до Луны, с идеей о том, что небо находится почти над самыми нашими головами, было покончено навсегда. Оно отодвинулось на колоссальное расстояние, представлявшееся грекам немыслимым.
Даже ближайшее небесное тело оказалось почти в 400 000 км от Земли, а все другие, значит, находились от нее еще дальше и, возможно, намного дальше. Ни о какой “плоской Земле накрытой стеклянным куполом” больше не могли помыслить даже самые стойкие скептики.
Перигей и апогей Луны по отношению к Земле – самое близкое и самое дальнее расстояние между Луной и Землей
Источник
Как рассчитать расстояние до Луны без телескопа и СМС-регистрации
В комментариях к моему прошлому посту отметили, что я не расписал, как древнегреческие астрономы высчитали расстояние до Луны. Вот этой теме и посвящен следующий текст. Правда, задача оказалась проще, чем с расстоянием до Солнца, поэтому и пост получится заметно покороче.
Начну с того, что у античной науки была одна особенность: и греки (и затем римляне) фактически не умели в алгебру, они не пользовались десятичными дробями, понятием ноля, даже система счисления у тех и других была алфавитная, а не позиционная. Но зато они хорошо научились решать геометрические задачи. И познавали мир с помощью геометрии.
В частности, рассчитали расстояние до Луны. Как раз Аристарх Самосский считается первым, кому это удалось. И сделал он это следующим образом (излагаю кратко, кому нужно больше подробностей – читайте в первоисточнике, кому нужно много формул — это тоже есть в Сети, например, здесь).
Сначала он измерил угловой радиус нашего спутника. Зная его, можно рассчитать «сколько» Лун можно разместить на ее орбите. Это количество, согласно формуле длины окружности, равняется произведению радиуса орбиты (того самого расстояния) на 2 π. Теперь, для того, чтобы высчитать радиус, Аристарху нужно было рассчитать не угловой, а фактический размер Луны.
Кратко его дальнейшее решение звучало так. Затмения доказывали, что Солнце находится дальше от Земли, чем Луна, а их угловые размеры примерно равные (по расчетам Аристарха). На основании этого астроном сделал вывод, что солнечные лучи, падающие на Луну, сходятся за ней в точку на поверхности Земли. Далее он измерил тень от Земли на диске Луны во время лунного затмения. Тень получилась в два раза больше, чем сама Луна.
Аристарх суммировал результаты обоих выводов (разница в тенях и «уход» солнечных лучей от диаметра в точку) и пришел к выводу, что Луна меньше Земли в три раза. Это было довольно близко к современному ответу – в 3,6 раза.
Итак, Аристарх посчитал, что Луна «укладывается» на орбиту 720 раз и она меньше Земли в 3 раза. Значит Земля «поместилась» бы на лунной орбите 240 раз. Диаметр Земли грекам был известен благодаря Эратосфену (и это было очень близкое к реальному значение). Теперь формула расчета радиуса лунной орбиты была довольно простой: 240 диаметров Земли разделить на 2 π. У Аристарха получилось 486400 км.
Спустя сто лет другой античный астроном Гиппарх уточнил его расчеты: в его ответе Луна помещалась на орбиту всего 650 раз, а расстояние получалось уже около 382 тыс. километров. Что всего на пару тысяч километров расходится с современными данными.
Источник
Измерить расстояние Земля-Луна с помощью лазера сложнее, чем вы думаете
Как измерить расстояние Земля-Луна? Какие результаты измерений и зачем их вообще делать? Вот ответы на эти интересные вопросы.
Одним из аргументов, используемых для опровержения теории о ложной посадке на наш естественный спутник, является информация об измерении расстояния Земля-Луна лазерным лучом. Для сторонников теории заговора нет таких свидетельств, как фотогалерея Аполлона, но научное значение измерений очень важно.
Напомним, первые геометрические попытки оценить расстояние Земля-Луна, хотя и ошибочные из-за несовершенства методов измерения, были предприняты Аристархом Самосским более 2000 лет назад.
Но вернемся в наше время. Лазерный луч излучается в специальные световозвращатели, оставленные на Луне миссиями Аполлон 11 , 14 и 15, а также Луноходами 1 и 2, установленными на советских луноходах. Благодаря этим измерениям мы знаем, например, что наш космический спутник удаляется от Земли со скоростью примерно 3,8 сантиметра в год. За это ответственны приливные силы, те же силы, которые вызывают приливы и отливы в земных морях и океанах.
Чем дальше Луна от Земли, тем длиннее наш день
За время жизни одного человека Луна удалится на 3 метра от Земли. Это немного. Когда мы начнем накапливать эти знания, они станут более важными. С началом эпохи великих географических открытий расстояние увеличилось на 20 метров. С момента появления на Земле первых гоминидов прошло 152 километра. Конечно, мы говорим о среднем расстоянии Земля-Луна, потому что из-за эллиптической орбиты мгновенное расстояние от Земли до Луны изменяется примерно на 50 000 километров в течение месяца. В настоящее время это в среднем 386 тысяч километров.
Изменение расстояния также влияет на Землю. Чем дальше находится Луна, тем медленнее Земля вращается вокруг своей оси. Продолжительность земного дня увеличивается. Конечно, в ходе человеческой жизни и даже существования нашей цивилизации изменения очень незначительны. За столетие день увеличивается всего на 2 миллисекунды. Это изменение не следует путать с расхождениями, возникающими в результате измерения времени с использованием атомных и астрономических часов — оно является результатом дополнительной секунды и не связано с замедлением скорости вращения Земли вокруг своей оси.
Мы не можем рассчитывать на 25 часов в нашей жизни. Есть модели, которые предполагают, что около 1,4 миллиарда лет назад, когда жизнь на Земле достигала уровня отдельных клеток, сутки длились 18 часов. Они также показывают, что темпы удаления изменчивы, поэтому трудно экстраполировать 3,8 сантиметра в год на геологическую шкалу времени.
Измерения расстояний и внутреннее строение Луны
Изменения продолжительности земных суток — не единственное ценное заключение, которое следует из измерений расстояний. Сегодня мы знаем, что у Луны, скорее всего, жидкое ядро. Теперь цель исследования — уточнить результаты и ответить на вопрос, является ли внутренняя часть ядра твердой, как Земля. Вся эта информация окажется бесценной для отслеживания истории лунного магнитного поля. Оно когда-то существовало и было сильным, а сегодня находится в зачаточном состоянии.
Как работает измерение расстояния Земля-Луна?
Самая большая светоотражающая панель, которую оставили позади астронавты Аполлона-15, имеет размеры 105 х 65 сантиметров. Это не плоское зеркало, а поверхность, покрытая угловыми отражателями, используемыми в лазерных измерениях (первые два имеют 100 таких отражателей, третье 300). Одиночные такие рефлекторы также размещаются на марсоходах, но они используются только для измерений с орбиты Марса.
Они работают так, что независимо от направления, с которого свет падает на панель, наблюдатели имеют гарантию, что он будет отражен обратно в направлении, параллельном направлению прихода. В случае обычного зеркала только свет, падающий прямо перед собой, мог бы вернуться к наблюдателю, и такое точное размещение объекта на поверхности Луны относительно передатчика на Земле было бы чудом.
В направлении зеркал излучается лазерный луч, который после отражения возвращается на Землю и регистрируется. Измеряется задержка, оценивается расстояние.
Почему все кажется простым, а на самом деле это не так?
В настоящее время измерения расстояния от Земли до Луны производятся с точностью до одного миллиметра. Сигнал, отправленный на Луну, отраженный от рефлектора, возвращается на Землю через 2,5 секунды. Возвращается, но не всегда! И неудивительно, ведь все это измерение расстояний очень сложно.
Первая проблема — это когерентность пучка. Относительно сфокусированный лазерный луч, который даже на Земле довольно большой, потому что он должен быть достаточно сильным, чтобы проникнуть в атмосферу Земли (дважды), на расстоянии Луны он даже 2 километра в ширину. Если его можно будет направить на отражатель, несколько фотонов в луче попадут в него, и еще меньше, вероятно, будет зарегистрировано обратно на Землю.
По данным НАСА, вероятность того, что одиночный фотон, излучаемый с Земли в направлении отражателя, оставленного Аполлоном 11. Вероятность того, что каждый из этих счастливых фотонов вернется на Землю и будет зарегистрирован, составляет 1/25 000 000, составляет 1/25 000 000. .
Поэтому, хотя измерения проводятся регулярно, это сложная задача. Есть еще одна проблема. На Земле принимается только 1/10 ожидаемого сигнала обратной связи. Предполагается, что панели каким-то образом загрязнились. Кажется, что на Луне сложно найти пыльную бурю, ведь ее атмосфера похожа на лучший вакуум, когда-либо созданный на Земле. Действительно, пыльной бури масштаба Марса не будет. Однако пыль, поднятая с поверхности, например, падающими метеороидами, даже на Луне может быть проблемой. Сделан первый шаг к прояснению трудностей измерения. Поэтому НАСА в сотрудничестве с французскими учеными решило использовать рефлектор на лунном рекоассансном орбитальном аппарате (LRO), чтобы выяснить суть проблемы. Этот отражатель размером с небольшую книгу, сам орбитальный аппарат все еще находится в движении, поэтому задача огромна. В итоге, однако, удалось зарегистрировать сигнал обратной связи после многих попыток. Чтобы повысить точность измерения, во французском центре в Грассе вместо зеленого лазерного луча использовались менее чувствительные инфракрасные и импульсные лазеры.
Сегодня известно, что что-то не так с ретрорефлекторами, отражающими лазерные лучи на Луне. И ученые прилагают максимум сил, чтобы точно определить, что на самом деле является причиной этих проблем.
Источник
Как измерили расстояние от Земли до Луны?
Расстояние от Земли до Луны пытались измерить еще древние греки.
До нас дошло только сочинение Аристарха Самосского «О величинах и расстояниях Солнца и Луны» (III в. до н. э.), где он впервые в истории науки попытался установить расстояния до этих небесных тел и их размеры.
К решению этого вопроса Аристарх подошел очень остроумно. Он исходил из предположения, что Луна имеет форму шара и светит отраженным от Солнца светом. В этом случае, в те моменты, когда Луна имеет вид полудиска, она образует прямоугольный треугольник с Землей и Солнцем:
Если в этот момент точно определить угол между направлениями с Земли на Луну и на Солнце (CAB), можно из простых геометрических соотношений найти, во сколько раз катет (расстояние от Земли до Луны AB) меньше гипотенузы (расстояния от Земли до Солнца AC). По Аристарху, CAB=87°; следовательно, соотношение этих сторон 1:19.
Аристарх ошибся приблизительно в 20 раз: в действительности расстояние до Луны меньше, чем до Солнца, почти в 400 раз. Загвоздка заключается в том, что точно определить момент, когда Луна оказывается в вершине прямого угла, лишь на основе наблюдений невозможно. Малейшая же неточность влечет за собой огромное отклонение от истинного значения.
Величайший астроном древности Гиппарх Никейский в середине II века до н. э. с большой уверенностью определил расстояние до Луны и ее размеры, приняв за единицу радиус земного шара.
В своих вычислениях Гиппарх исходил из правильного понимания причины лунных затмений: Луна попадает в земную тень, имеющую форму конуса с вершиной, находящейся где-то в стороне Луны.
Посмотрите на рисунок. Он показывает положение Солнца, Земли и Луны во время лунного затмения. Из подобия треугольников следует, что расстояние от Земли до Солнца AB во столько раз больше расстояния от Земли до Луны BC, во сколько раз разность радиусов Солнца и Земли (AE — BF) больше разности радиусов Земли и ее тени на расстоянии Луны (BF — CG).
Из наблюдений при помощи простейших угломерных инструментов следовало, что радиус Луны составляет 15′, а радиус тени приблизительно 40′, то есть радиус тени больше радиуса Луны почти в 2,7 раза. Приняв расстояние от Земли до Солнца за единицу, можно было установить, что радиус Луны почти в 3,5 раза меньше радиуса Земли.
Уже было известно, что под углом в 1′ наблюдается предмет, расстояние до которого превосходит его размеры в 3 483 раза. Следовательно, рассуждал Гиппарх, под углом в 15′ наблюдаемый предмет будет в 15 раз ближе. Значит, Луна находится от нас на расстоянии, в 230 раз (3 483 : 15) превосходящем ее радиус. А если радиус Земли составляет приблизительно 3,5 радиуса Луны, то расстояние до Луны равно 230 : 3,5
60 радиусов Земли, или около 30 земных диаметров (это около 382 тыс. километров).
В наше время измерение расстояния от земли до Луны было выполнено с помощью метода лазерной локации. Суть этого метода заключается в следующем. На поверхности Луны устанавливается уголковый отражатель. С Земли с помощью лазера на зеркало отражателя направляется лазерный луч. При этом точно фиксируется время, когда сигнал был излучён. Отражённый от прибора на Луне свет в течение примерно одной секунды возвращается в телескоп. Определив точное время, за которое луч света проходит расстояние от Земли до Луны и обратно, можно установить расстояние от источника излучения до отражателя.
С помощью этого метода расстояние от земли до Луны определено с точностью до нескольких километров (максимальная точность измерения в настоящее время — 2-3 сантиметра!): в среднем оно составляет 384 403 км. «В среднем» не потому, что это расстояние взято из разных или приблизительных результатов измерений, а потому, что орбита Луны представляет собой не окружность, а эллипс. В апогее (наиболее удаленная от Земли точка орбиты) расстояние от центра Земли до Луны 406 670 км, в перигее (наиболее близкая точка орбиты) — 356 400 км.
Источник