Способ измерения работы силы

Лекция 14. Основные методы измерения силы:

Основные методы измерения силы:

1. Измерением ускорения тела с из­вестной массой F = та:

посредством акселерометра; измерением амплитуды и частоты колебаний

2. Сравнением неизвестной силы с си­лой тяжести Р =mg: непосредственным нагружением об­разцовыми гирями;

посредством гидропередачи и об­разцовых гирь;

посредством рычагов и образцовых гирь;

посредством рычагов и маятника

3. Измерением упругой деформации

тела, взаимодействующего с неиз-

вестной силой F = с |; посредством датчиков деформации; посредством датчиков перемеще­ния 4. Сравнением неизвестной силы с си­лой взаимодейтсвия тока с магнит­ным полем F = / В I sin a посредством электродинамическо­го силовозбудителя. Измерение переменной гармонической силы путем определения амплитуды и частоты колебаний тела с известной мас­сой может быть осуществлено с высокой точностью. Массу можно измерить с по­грешностью, не превышающей несколь­ких тысячных долей процента. С такой же точностью можно измерить и частоту колебаний. Амплитуду колебаний тела с известной массой можно измерить с погрешностью, не превышающей не­скольких десятых долей процента, кото­рая, по существу, и будет определять по­грешность измерения силы указанным методом.

Метод измерения силы сравнением не­известной силы с силой тяжести исполь-

зуют при точных измерениях и воспроиз­ведении статических и квазистатических сил.

Метод непосредственного нагружения используют для создания Государствен­ных первичных эталонов единицы силы, воспроизводящих ее с наивысшей точ­ностью.

Метод сравнения неизвестной силы с силой тяжести посредством рычагов и образцовых гирь используют для созда­ния образцовых средств второго разряда для измерения силы, обеспечивающих ее измерение с погрешностью, не превы­шающей 0,2 % измеряемой величины, а также в силоизмерителях испытательных машин, обеспечивающих измерение силы с погрешностью, не превышающей 1 % измеряемой силы в диапазоне 0,04 — 1 от верхнего предела силоизмерителя.

Метод сравнения неизвестной силы с силой тяжести посредством гидропере­дачи и образцовых гирь используют так­же в образцовых средствах второго раз­ряда для измерения силы и в силоизме­рителях испытательных машин. Для ис-

ключения трения в гидропередаче приме­няют пару поршень-цилиндр, в которой один из элементов вращается относи­тельно другого.

Метод сравнения неизвестной силы с силой тяжести посредством рычагов и маятника используют в силоизмерите-лях испытательных машин.

Все средства для измерения силы, основанные на методах сравнения неиз­вестной силы с силой тяжести, обычно представляют собой стационарные уста­новки. Процесс сравнения сил в этих установках механизирован.

Измерение силы посредством изме­рения упругой деформации тела, взаимо­действующего с неизвестной силой, яв­ляется самым распространенным мето­дом, который используют как в стацио­нарных, так и в переносных средствах для измерения статических и перемен­ных во времени сил. Этот метод исполь­зуют в образцовых динамометрах перво­го разряда, обеспечивающих передачу единицы силы от Государственного эта­лона к образцовым средствам второго разряда с погрешностью, не превышаю­щей 0,1 % измеряемой силы. Кроме того, этот метод используют в рабочих средствах измерения статических и пере­менных во времени сил.

Читайте также:  Способ получения вакцин микробиология

Метод позволяет создать стационар­ные и переносные средства измерения растягивающих и сжимающих сил — ди­намометры, которые содержат упругий элемент, снабженный для его включения в силовую цепь захватами либо опорами. В упругом элементе возникает сила реакции, противодействующая измеряе­мой силе. Упругий элемент может быть электрически неактивным либо электри­чески активным, т. е. он является одно­временно и чувствительным элементом.

Упругий электрически неактивный элемент выполняет чисто механические функции. Возникающая деформация упругого элемента воспринимается чув­ствительным элементом, которым может быть либо датчик деформации, либо

датчик перемещения, преобразующий ее в выходную величину.

Упругий, электрически активный эле­мент реагирует на созданное измеряемой силой поле механических напряжений или деформаций изменением своих элек­трических или магнитных характеристик. К упругим, электрически активным эле­ментам относят, например, пьезоэлектри­ческие и магнитоанизотропные.

Для достижения оптимальных метро­логических характеристик динамометра необходимо соблюдение нескольких принципов.

Принцип цельности конструкции. Из­меряемая сила должна передаваться в ди­намометре по сплошной среде из одного материала. Нарушение сплошности кон­струкции упругого элемента является причиной возникновения трения между сопрягаемыми элементами. С этим тре­нием связаны погрешности измерения силы, которые могут быть значитель­ными.

Принцип интегрирования. Динамометр тем точнее, чем лучше чувствительный элемент распределен по поперечному се­чению упругого элемента. С этой целью используют усреднение — интегрирование напряжения или деформации упругого элемента, которое можно охарактери­зовать или как мнимое, или как дей­ствительное.

При мнимом интегрировании о всем поле напряжения или деформации, а сле­довательно, и об измеряемой силе судят по состоянию в одной точке этого поля. При этом предполагают, что внутри огра­ниченной области упругого элемента су­ществует определенное механическое по­ле, которое не зависит от точки прило­жения силы. Это дает возможность ис­пользовать один чувствительный эле­мент. Конструктивными решениями, обеспечивающими мнимое интегрирова­ние, являются удаление силовосприни-мающих частей упругого элемента от области расположения чувствительного элемента, ограничение области возмож­ных точек приложения силы.

Дата добавления: 2015-08-14 ; просмотров: 1775 ; ЗАКАЗАТЬ НАПИСАНИЕ РАБОТЫ

Источник

Механическая работа

О чем эта статья:

Для нас привычно понятие «работа» в бытовом смысле. Работая, мы совершаем какое-либо действие, чаще всего полезное. В физике (если точнее, то в механике) термин «работа» показывает, какую силу в результате действия приложили, и на какое расстояние тело в результате действия этой силы переместилось.

Например, нам нужно поднять велосипед по лестнице в квартиру. Тогда работа будет определяться тем, сколько весит велосипед и на каком этаже (на какой высоте) находится квартира.

Механическая работа — это физическая величина, прямо пропорциональная приложенной к телу силе и пройденному телом пути.

Чтобы рассчитать работу, нам необходимо умножить численное значение приложенной к телу силы F на путь, пройденный телом в направлении действия силы S. Работа обозначается латинской буквой А.

Механическая работа

А = FS

A — механическая работа [Дж]

F — приложенная сила [Н]

S — путь [м]

Если под действием силы в 1 ньютон тело переместилось на 1 метр, то данной силой совершена работа в 1 джоуль.

Читайте также:  Энтеральный способ введения лекарственных веществ это

Поскольку сила и путь — векторные величины, в случае наличия между ними угла формула принимает вид.

Механическая работа

А = FScosα

A — механическая работа [Дж]

F — приложенная сила [Н]

S — путь [м]

α — угол между векторами силы и перемещения []

Числовое значение работы может становиться отрицательным, если вектор силы противоположен вектору скорости. Иными словами, сила может не только придавать телу скорость для совершения движения, но и препятствовать уже совершаемому перемещению. В таком случае сила называется противодействующей.

Для совершения работы необходимы два условия:

  • чтобы на тело действовала сила,
  • чтобы происходило перемещение тела.

Сила, действующая на тело, может и не совершать работу. Например, если кто-то безуспешно пытается сдвинуть с места тяжелый шкаф. Сила, с которой человек действует на шкаф, не совершает работу, поскольку перемещение шкафа равно нулю.

Полезная и затраченная работа

Был такой мифологический персонаж у древних греков — Сизиф. За то, что он обманул богов, те приговорили его после смерти вечно таскать огромный булыжник вверх по горе, откуда этот булыжник скатывался — и так без конца. В общем, Сизиф делал совершенно бесполезное дело с нулевым КПД. Поэтому бесполезную работу и называют «сизифов труд».

Чтобы разобраться в понятиях полезной и затраченной работы, давайте пофантазируем и представим, что Сизифа помиловали и камень больше не скатывается с горы, а КПД перестал быть нулевым.

Полезная работа в этом случае равна потенциальной энергии, приобретенной булыжником. Потенциальная энергия, в свою очередь, прямо пропорциональна высоте: чем выше расположено тело, тем больше его потенциальная энергия. Выходит, чем выше Сизиф прикатил камень, тем больше полезная работа.

Потенциальная энергия

Еп = mgh

m — масса тела [кг]

g — ускорение свободного падения [м/с 2 ]

h — высота [м]

На планете Земля g ≈ 9,8 м/с 2

Затраченная работа в нашем примере — это механическая работа Сизифа. Механическая работа зависит от приложенной силы и пути, на протяжении которого эта сила была приложена.

Механическая работа

А = FS

A — механическая работа [Дж]

F — приложенная сила [Н]

S — путь [м]

И как же достоверно определить, какая работа полезная, а какая затраченная?

Все очень просто! Задаем два вопроса:

  1. За счет чего происходит процесс?
  2. Ради какого результата?

В примере выше процесс происходит ради того, чтобы тело поднялось на какую-то высоту, а значит — приобрело потенциальную энергию (для физики это синонимы).

Происходит процесс за счет энергии, затраченной Сизифом — вот и затраченная работа.

Мощность

На заводах по всему миру большинство задач выполняют машины. Например, если нам нужно закрыть крышечками тысячу банок колы, аппарат сделает это в считанные минуты. У человека эта задача заняла бы намного больше времени. Получается, что машина и человек выполняют одинаковую работу за разные промежутки времени. Для того, чтобы описать скорость выполнения работы, нам потребуется понятие мощности.

Мощностью называется физическая величина, равная отношению работы ко времени ее выполнения.

Читайте также:  Способы монтажа настенных котлов

Мощность

N = A/t

N — мощность [Вт]

A — механическая работа [Дж]

t — время [с]

Один ватт — это мощность, при которой работа в один джоуль совершается за одну секунду.

Также для мощности справедлива другая формула:

Мощность

N = Fv

N — мощность [Вт]

F — приложенная сила [Н]

v — скорость [м/с]

Как и для работы, для мощности справедливо правило знаков: если векторы направлены противоположно, значение мощности будет отрицательным.

Поскольку сила и скорость — векторные величины, в случае наличия между ними угла формула принимает следующий вид:

Мощность

N = Fvcosα

N — мощность [Вт]

F — приложенная сила [Н]

v — скорость [м/с]

α — угол между векторами силы и скорости []

Примеры решения задач

Задача 1

Ложка медленно тонет в большой банке меда. На нее действуют сила тяжести, сила вязкого трения и выталкивающая сила. Какая из этих сил при движении тела совершает положительную работу? Выберите правильный ответ:

  1. Выталкивающая сила.
  2. Сила вязкого трения.
  3. Сила тяжести.
  4. Ни одна из перечисленных сил.

Решение

Поскольку ложка падает вниз, перемещение направлено вниз. В ту же сторону, что и перемещение, направлена только сила тяжести. Это значит, что она совершает положительную работу.

Ответ: 3.

Задача 2

Ящик тянут по земле за веревку по горизонтальной окружности длиной L = 40 м с постоянной по модулю скоростью. Модуль силы трения, действующей на ящик со стороны земли, равен 80 H. Чему равна работа силы тяги за один оборот?

Решение

Поскольку ящик тянут с постоянной по модулю скоростью, его кинетическая энергия не меняется. Вся энергия, которая расходуется на работу силы трения, должна поступать в систему за счет работы силы тяги. Отсюда находим работу силы тяги за один оборот:

Ответ: 3200 Дж.

Задача 3

Тело массой 2 кг под действием силы F перемещается вверх по наклонной плоскости на расстояние l = 5 м. Расстояние тела от поверхности Земли при этом увеличивается на 3 метра. Вектор силы F направлен параллельно наклонной плоскости, модуль силы F равен 30 Н. Какую работу при этом перемещении в системе отсчета, связанной с наклонной плоскостью, совершила сила F?

Решение

В данном случае нас просят найти работу силы F, совершенную при перемещении тела по наклонной плоскости. Это значит, что нас интересуют сила F и пройденный путь. Если бы нас спрашивали про работу силы тяжести, мы бы считали через силу тяжести и высоту.

Работа силы определяется как скалярное произведение вектора силы и вектора перемещения тела. Следовательно:

A = Fl = 30 * 5 = 150 Дж

Ответ: 150 Дж.

Задача 4

Тело движется вдоль оси ОХ под действием силы F = 2 Н, направленной вдоль этой оси. На рисунке приведен график зависимости проекции скорости v x тела на эту ось от времени t. Какую мощность развивает эта сила в момент времени t = 3 с?

Решение

На графике видно, что проекция скорости тела в момент времени 3 секунды равна 5 м/с.

Мощность можно найти по формуле N = Fv.

Источник

Оцените статью
Разные способы