- Виды и методы электрических измерений
- Средства измерения электрических величин
- Характеристика средств измерения электрических величин
- Средства измерения электрических величин
- Электроизмерительные приборы (амперметры и вольтметры) серии Э47
- Принцип действия амперметров и вольтметров серии Э47
- Трансформаторы тока ТТИ
Виды и методы электрических измерений
При изучении электротехники приходится иметь дело с электрическим, магнитными и механическими величинами и измерять эти величины.
Измерить электрическую, магнитную или какую-либо иную величину — это значит сравнить ее с другой однородной величиной, принятой за единицу.
В этой статье рассмотрена классификация измерений, наиболее важная для теории и практики электрических измерений. К такой классификации можно отнести классификацию измерений с методологической точки зрения, т. е. в зависимости от общих приемов получения результатов измерений (виды или классы измерений), классификацию измерений в зависимости от использования принципов и средств измерений (методы измерений) и классификацию измерений в зависимости от динамики измеряемых величин.
Виды электрических измерений
В зависимости от общих приемов получения результата измерения делятся на следующие виды: прямые, косвенные и совместные.
К прямым измерениям относятся те, результат которых получается непосредственно из опытных данных. Прямое измерение условно можно выразить формулой Y = Х, где Y — искомое значение измеряемой величины; X — значение, непосредственно получаемое из опытных данных. К этому виду измерений относятся измерения различных физических величин при помощи приборов, градуированных в установленных единицах.
Например, измерения силы тока амперметром, температуры — термометром и т. д. К этому виду измерений относятся и измерения, при которых искомое значение величины определяется непосредственным сравнением ее с мерой. Применяемые средства и простота (или сложность) эксперимента при отнесении измерения к прямому не учитываются.
Косвенным называется такое измерение, при котором искомое значение величины находят на основании известной зависимости между этой величиной и величинами, подвергаемыми прямым измерениям. При косвенных измерениях числовое значение измеряемой величины определяется путем вычисления по формуле Y = F (Xl, Х2 . Х n ), где Y — искомое значение измеряемой величины; Х 1 , Х2, Х n — значения измеренных величин. В качестве примера косвенных измерений можно указать на измерение мощности в цепях постоянного тока амперметром и вольтметром.
Совместными измерениями называются такие, при которых искомые значения разноименных величин определяются путем решения системы уравнений, связывающих значения искомых величин с непосредственно измеренными величинами . В качестве примера совместных измерений можно привести определение коэффициентов в формуле, связывающей сопротивление резистора с его температурой: Rt = R20 [1+α (T1-20)+β(T1-20)]
Методы электрических измерений
В зависимости от совокупности приемов использования принципов и средств измерений все методы делятся на метод непосредственной оценки и методы сравнения.
Сущность метода непосредственной оценки заключается в том, что о значении измеряемой величины судят по показанию одного (прямые измерения) или нескольких (косвенные измерения) приборов, заранее проградуированных в единицах измеряемой величины или в единицах других величин, от которых зависит измеряемая величина.
Простейшим примером метода непосредственной оценки может служить измерение какой-либо величины одним прибором, шкала которого проградуирована в соответствующих единицах.
Вторая большая группа методов электрических измерений объединена под общим названием методов сравнения . К ним относятся все те методы электрических измерений, при которых измеряемая величина сравнивается с величиной, воспроизводимой мерой. Таким образом, отличительной чертой методов сравнения является непосредственное участие мер в процессе измерения.
Методы сравнения делятся на следующие: нулевой, дифференциальный, замещения и совпадения.
Нулевой метод — это метод сравнения измеряемой величины с мерой, при котором результирующий эффект воздействия величин на индикатор доводится до нуля. Таким образом, при достижении равновесия наблюдается исчезновение определенного явления, например тока в участке цепи или напряжения на нем, что может быть зафиксировано при помощи служащих для этой цели приборов — нуль-индикаторов. Вследствие высокой чувствительности нуль-индикаторов, а также потому, что меры могут быть выполнены с большой точностью, получается и большая точность измерений.
Примером применения нулевого метода может быть измерение электрического сопротивления мостом с полным его уравновешиванием.
При дифференциальном методе , так же как и при нулевом, измеряемая величина сравнивается непосредственно или косвенно с мерой, а о значении измеряемой величины в результате сравнения судят по разности одновременно производимых этими величинами эффектов и по известной величине, воспроизводимой мерой. Таким образом, в дифференциальном методе происходит неполное уравновешивание измеряемой величины, и в этом заключается отличие дифференциального метода от нулевого.
Дифференциальный метод сочетает в себе часть признаков метода непосредственной оценки и часть признаков нулевого метода. Он может дать весьма точный результат измерения, если только измеряемая величина и мера мало отличаются друг от друга.
Например, если разность этих двух величин равна 1 % и измеряется с погрешностью до 1 %, то тем самым погрешность измерения искомой величины уменьшается до 0,01%, если не учитывать погрешности меры. Примером применения дифференциального метода может служить измерение вольтметром разности двух напряжений, из которых одно известно с большой точностью, а другое является искомой величиной.
Метод замещения заключается в поочередном измерении искомой величины прибором и измерении этим же прибором меры, воспроизводящей однородную с измеряемой величину. По результатам двух измерений может быть вычислена искомая величина. Вследствие того что оба измерения делаются одним и тем же прибором в одинаковых внешних условиях, а искомая величина определяется по отношению показаний прибора, в значительной мере уменьшается погрешность результата измерения. Так как погрешность прибора обычно неодинакова в различных точках шкалы, наибольшая точность измерения получается при одинаковых показаниях прибора.
Примером применения метода замещения может быть измерение сравнительно большого электрического сопротивления на постоянном токе путем поочередного измерения силы тока, протекающего через контролируемый резистор и образцовый. Питание цепи при измерениях должно производиться от одного и того же источника тока. Сопротивление источника тока и прибора, измеряющего ток, должно быть очень мало по сравнению с изменяемым и образцовым сопротивлениями.
Метод совпадений — это такой метод, при котором разность между измеряемой величиной и величиной, воспроизводимой мерой, измеряют, используя совпадение отметок шкал или периодических сигналов. Этот метод широко применяется в практике неэлектрических измерений.
Примером может служить измерение длины штангенциркулем с нониусом. В электрических измерениях в качестве примера можно привести измерение частоты вращения тела стробоскопом.
Укажем еще классификацию измерений по признаку изменения во времени измеряемой величины . В зависимости от того, изменяется ли измеряемая величина во времени или остается в процессе измерения неизменной, различаются статические и динамические измерения. Статическими называются измерения постоянных или установившихся значений. К ним относятся и измерения действующих и амплитудных значений величин, но в установившемся режиме.
Если измеряются мгновенные значения изменяющихся во времени величин, то измерения называются динамическими . Если при динамических измерениях средства измерений позволяют непрерывно следить за значениями измеряемой величины, такие измерения называются непрерывными.
Можно осуществить измерения какой-либо величины путем измерений ее значений в некоторые моменты времени t 1 , t2 и т. д. В результате окажутся известными не все значения измеряемой величины, а лишь значения в выбранные моменты времени. Такие измерения называются дискретными .
Если Вам понравилась эта статья, поделитесь ссылкой на неё в социальных сетях. Это сильно поможет развитию нашего сайта!
Подписывайтесь на наш канал в Telegram!
Просто пройдите по ссылке и подключитесь к каналу.
Не пропустите обновления, подпишитесь на наши соцсети:
Источник
Средства измерения электрических величин
Средствами измерения электрических величин называют технические устройства, используемые при измерениях и имеющие заданные метрологические характеристики.
В общем случае к средствам измерений относятся: меры, измерительные преобразователи, измерительные приборы и установки.
Мера предназначена для воспроизведения физической величины заданного значения.
К основным мерам электрических величин относятся меры: эдс, электрического сопротивления, индуктивности, электрической емкости и др. Меры высшего класса называются образцовыми. Они служат для проверки и градуировки рабочих мер и измерительных приборов.
Измерительные преобразователи предназначены для выработки электрического сигнала в форме, удобной для передачи, дальнейшего преобразования, обработки и хранения, но не поддающейся непосредственному восприятию.
Различают преобразователи электрических величин в электрические — шунты, добавочные сопротивления, делители напряжения и т. д., а также преобразователи неэлектрических величин в электрические — первичные преобразователи.
Измерительные приборы предназначены для выработки сигналов в форме, доступной для непосредственного наблюдения
К ним относятся, например, амперметр, вольтметр, ваттметр и др.
Электроизмерительная установка представляет собой совокупность мер, измерительных преобразователей и приборов, расположенных в одном месте и предназначенных для выработки сигналов в форме, удобной для непосредственного наблюдения.
Все средства измерений, и в частности электроизмерительные приборы, можно классифицировать по следующим признакам: виду получаемой информации, методу измерения, способу представления и регистрации информации.
ЗАПОМНИТЕ
Основными характеристиками электроизмерительных приборов являются: погрешность, вариация показаний, чувствительность, потребляемая мощность, время установления показаний и надежность.
Вариация показаний прибора — наибольшая разность показаний прибора при одном и том же значении измеряемой величины.
Она определяется при плавном подходе стрелки к выбранной отметке шкалы при движении стрелки один раз от начальной, а второй раз от конечной отметки. Причиной вариации является в основном трение в опорах подвижной части прибора.
Чувствительность S прибора — отношение приращения перемещения указателя ∆а к приращению измеряемой величины ∆х:
Если чувствительность постоянна (шкала равномерная), то ее можно определить как S = а/х.
Величина, обратная чувствительности (С = 1/S), называется ценой деления (постоянной) прибора. Она равна числу единиц измеряемой величины, приходящихся на одно деление шкалы.
Например, при S = 10 дел/В постоянная С = 0,1 В/дел.
Потребляемая мощность— мощность, которую потребляет прибор при включении его в цепь.
В результате этого меняется режим работы цепи, что в конечном счете приводит к увеличению погрешности измерения. Поэтому малое потребление мощности является достоинством прибора.
Время установления показаний— промежуток времени с момента включения измеряемой величины до момента, когда указатель займет положение, отличающееся от установившегося значения не более чем на 1,5%.
Время установления показаний для большинства аналоговых измерительных приборов не превышает 4 с.
Надежность— способность электроизмерительных приборов, сохранять заданные характеристики при определенных условиях работы в течение заданного времени. Количественной мерой надежности является среднее время безотказной или исправной работы прибора.
Источник
Характеристика средств измерения электрических величин
Средства измерения электрических величин
Измерением называется процесс нахождения опытным путем значения физической величины с помощью специальных технических средств. Электроизмерительные приборы широко используются при наблюдении за работой электроустановок, при контроле за их состоянием и режимами работы, при учете расхода и качества электрической энергии, при ремонте и наладке электротехнического оборудования.
Электроизмерительными приборами называют средства электрических измерений, предназначенные для выработки сигналов, функционально связанных с измеряемыми физическими величинами в форме, доступной для восприятия наблюдателем или автоматическим устройством.
Электроизмерительные приборы делятся:
- по виду получаемой информации на приборы для измерения электрических (ток, напряжение, мощность и др.) и неэлектрических (температура, давление и др.) величин;
- по методу измерения — на приборы непосредственной оценки (амперметр, вольтметр и др.) и приборы сравнения (измерительные мосты и компенсаторы);
- по способу представления измеряемой информации — на аналоговые и дискретные (цифровые).
Наибольшее распространение получили аналоговые приборы непосредственной оценки, которые классифицируются по признакам: род тока (постоянный или переменный), род измеряемой величины (ток, напряжение, мощность, сдвиг фаз), принцип действия (магнитоэлектрические, электромагнитные, электро- и ферродинамические), класс точности и условия эксплуатации.
Для расширения пределов измерения электрических приборов на постоянном токе используются шунты (для тока) и добавочные сопротивления Rd (для напряжения); на переменном токе трансформаторы тока (тт) и напряжения (тн).
Используемые приборы для измерения электрических величин.
Измерение напряжения осуществляется вольтметром (V), подключаемым непосредственно на зажимы исследуемого участка электрической цепи.
Измерение тока осуществляется амперметром (А), включаемым последовательно с элементами исследуемой цепи.
Измерение мощности (W) и сдвига фаз () в цепях переменного тока производится с помощью ваттметра и фазометра. Эти приборы имеют две обмотки: неподвижную токовую, которая включается последовательно, и подвижную обмотку напряжения, включаемую параллельно.
Для измерения частоты переменного тока (f) применяются частотометры.
Для измерения и учета электрической энергии — счетчики электрической энергии, подключаемые к измерительной цепи аналогично ваттметрам.
Основными характеристиками электроизмерительных приборов являются: погрешность, вариации показаний, чувствительность, потребляемая мощность, время установления показаний и надежность.
Основными частями электромеханических приборов являются электроизмерительная цепь и измерительный механизм.
Измерительная цепь прибора является преобразователем и состоит из различных соединений активного и реактивного сопротивлений и других элементов в зависимости от характера преобразования. Измерительный механизм преобразует электромагнитную энергию в механическую, необходимую для углового перемещения его подвижной части относительно неподвижной. Угловые перемещения стрелки а функционально связано с крутящим и противодействующим моментом прибора уравнением преобразования вида:
к — конструктивная постоянная прибора;
— электрическая величина, под действием которой стрелка прибора отклоняется на угол
На основании данного уравнения можно утверждать, что если:
- входная величина Х в первой степени (п=1), то а будет менять знак при изменении полярности, и на частотах, отличных от 0, прибор работать не может;
- n=2, то прибор может работать как на постоянном, так и на переменном токе;
- в уравнение входит не одна величина, то в качестве входной можно выбирать любую, оставляя остальные постоянными;
- две величины являются входными, то прибор можно использовать в качестве множительного преобразователя (ваттметр, счетчик) или делительного (фазометр, частотометр);
- при двух или более входных величинах на несинусоидальном токе прибор обладает свойством избирательности в том смысле, что отклонение подвижной части определяется величиной только одной частоты.
Общими элементами являются: отсчетное устройство, подвижная часть измерительного механизма, устройства для создания вращающего, противодействующего и успокаивающего моментов.
Отсчетное устройство имеет шкалу и указатель. Интервал между соседними метками шкалы называют делением.
Цена деления прибора представляет собой значение измеряемой величины, вызывающее отклонение стрелки прибора на одно деление и определяется зависимостями:
Шкалы могут быть равномерными и неравномерными. Область между начальным и конечным значениями шкалы называют диапазоном показаний прибора.
Показания электроизмерительных приборов несколько отличаются от действительных значений измеряемых величин. Это вызвано трением в измерительной части механизма, влиянием внешних магнитных и электрических полей, изменением температуры окружающей среды и т.д. Разность между измеренным Аи и действительным Ад значениями контролируемой величины называется абсолютной погрешностью измерений:
Так как абсолютная погрешность не дает представления о степени точности измерений, то используют относительную погрешность:
Поскольку действительное значение измеряемой величины при измерении неизвестно, для определения и
можно воспользоваться классом точности прибора.
Амперметры, вольтметры и ваттметры подразделяются на 8 классов точности: 0,05; 0,1; 0,2; 0,5; 1,0; 1,5; 2,5; 4,0. Цифра, обозначающая класс точности, определяет наибольшую положительную или отрицательную основную приведенную погрешность, которую имеет данный прибор. Например, для класса точности 0,5 приведенная погрешность составит ±0,5%.
Наименование параметра | Амперметры Э47 | Вольтметры Э47 |
Система | электромагнитная | электромагнитная |
Способ вывода информации | аналоговый | аналоговый |
Диапазон измерений | 0. 3000 А | 0. 600 В |
Способ установки | на панель щита | на панель щита |
Способ включения | 100 А-через трансформатор тока с вторичным током 5 А | непосредственный |
Класс точности | 1,5 | 1,5 |
Предел допускаемой основной погрешности приборов, % | ±1,5 | ±1,5 |
Номинальное рабочее напряжение, не более | 400 В | 600 В |
Допустимая длительная перегрузка (не более 2 ч) | 120% от конечного значения диапазона измерений | 120% от конечного значения диапазона измерений |
Средняя наработка до отказа, не менее, ч | 65000 | 65000 |
Средний срок службы, не менее, лет | 8 | 8 |
Температура окружающего воздуха, °С | 20±5 | 20±5 |
Частота измеряемой величины, Гц | 45. 65 | 45. 65 |
Положение монтажной плоскости | вертикальное | вертикальное |
Габариты, мм | 72x72x73,5 96x96x73,5 | 72x72x73,5 96x96x73,5 |
Электроизмерительные приборы (амперметры и вольтметры) серии Э47
Применяются в низковольтных комплектных устройствах в распределительных электрических сетях жилых, коммерческих и производственных объектов.
Амперметры Э47 — аналоговые электромагнитные электроизмерительные приборы — предназначены для измерения силы тока в электрических цепях переменного тока.
Вольтметры Э47 — аналоговые электромагнитные электроизмерительные приборы — предназначены для измерения напряжения в электрических цепях переменного тока.
Широкий диапазон измерений: амперметры до 3000 А, вольтметры до 600 В. Класс точности 1.5.
Амперметры, рассчитанные на измерение токов выше 50 А подключают к измеряемой цепи через трансформатор тока с номинальным вторичным рабочим током 5 А.
Принцип действия амперметров и вольтметров серии Э47
Амперметры и вольтметры Э47 относятся к приборам с электромагнитной системой. В составе имеют круглую катушку с помещенными внутрь подвижным и неподвижным сердечниками. При протекании тока через витки катушки, создается магнитное поле, намагничивающее оба сердечника. Вследствие чего.
одноименные полюса сердечников отталкиваются, и подвижный сердечник поворачивает ось со стрелкой. Для защиты от негативного влияния внешних магнитных полей, катушка и сердечники защищены металлическим экраном.
Принцип действия приборов магнитоэлектрической системы основан на взаимодействии поля постоянного магнита и проводников с током, а электромагнитной — на втягивании стального сердечника в неподвижную катушку при существовании в ней тока. Электродинамическая система имеет две катушки. Одна из катушек, подвижная, укрепляется на оси и располагается внутри неподвижной катушки.
Принцип действия прибора, возможность его работы в тех или иных условиях, возможные предельные погрешности прибора могут быть установлены по условным обозначениям, нанесенным на циферблат прибора.
Например: (А) — амперметр; (
) — переменный ток в пределах от 0 до 50А; () — вертикального положения, класс точности 1,0 и т.д.
Измерительные трансформаторы тока и напряжения имеют ферромагнитные магнитопроводы, на которых располагаются первичные и вторичные обмотки. Число витков вторичной обмотки всегда больше первичной.
Зажимы первичной обмотки трансформатора тока обозначают буквами Л1 и Л2 (линия), а вторичной — И1 и И2 (измерение). По правилам техники безопасности один из зажимов вторичной обмотки трансформатора тока, так же, как и трансформатора напряжения, заземляют, что делается на случай повреждения изоляции. Первичную обмотку трансформатора тока включают последовательно с объектом, у которого проводят измерения. Сопротивление первичной обмотки трансформатора тока мало по сравнению с сопротивлением потребителя. Вторичная обмотка замыкается на амперметр и токовые цепи приборов (ваттметр, счетчик и т. д.). Токовые обмотки ваттметров, счетчиков и реле рассчитывают на 5А, вольтметры, цепи напряжения ваттметров, счетчиков и обмоток реле — на 100 В.
Сопротивления амперметра и токовых цепей ваттметра невелики, поэтому трансформатор тока работает фактически в режиме короткого замыкания. Номинальный ток вторичной обмотки равен 5А. Коэффициент трансформации трансформатора тока равен отношению первичного тока к номинальному току вторичной обмотки, а у трансформатора напряжения — отношению первичного напряжения ко вторичному номинальному.
Сопротивление вольтметра и цепей напряжения измерительных приборов всегда велико и составляет не менее тысячи Ом. В связи с этим трансформатор напряжения работает в режиме холостого хода.
Показания приборов, включенных через трансформаторы тока и напряжения, необходимо умножать на коэффициент трансформации.
Трансформаторы тока ТТИ
Трансформаторы тока ТТИ предназначены: для применения в схемах учета электроэнергии при расчетах с потребителями; для применения в схемах коммерческого учета электроэнергии; для передачи сигнала измерительной информации измерительным приборам или устройствам защиты и управления. Корпус трансформатора выполнен неразборным и опломбирован наклейкой, что делает невозможным доступ ко вторичной обмотке. Клеммные зажимы вторичной обмотки закрываются прозрачной крышкой, что обеспечивает безопасность при эксплуатации. Кроме того, крышку можно опломбировать. Это особенно важно в схемах учета электроэнергии, так как позволяет исключить несанкционированный доступ к клеммным зажимам вторичной обмотки.
Встроенная медная луженая шина у модификации ТТИ-А — дает возможность подключения как медных, так и алюминиевых проводников.
Номинальное напряжениe — 660 В; номинальная частота сети — 50 Гц; класс точности трансформатора 0,5 и 0,5S; номинальный вторичный рабочий ток — 5А.
Модификации трансформаторов | Номинальный первичный ток трансформатора, А |
ТТИ-А | 5; 10; 15; 20; 25; 30; 40; 50; 60; 75; 80; 100; 120; 125; 150; 200; 250; 300; 400; 500; 600; 800; 1000 |
ТТИ-30 | 150; 200; 250; 300 |
ТТИ-40 | 300; 400; 500; 600 |
ТТИ-60 | 600; 750; 800; 1000 |
ТТИ-85 | 750; 800; 1000; 1200; 1500 |
ТТИ-100 | 1500; 1600; 2000; 2500; 3000 |
ТТИ-125 | 1500; 2000; 2500; 3000; 4000; 5000 |
Электронные аналоговые приборы представляют собой сочетание различных электронных преобразователей и магнитоэлектрического прибора и служат для измерения электрических величин. Они обладают высоким входным сопротивлением (малым потреблением энергии от объекта измерения) и высокой чувствительностью. Используются для измерения в цепях повышенной и высокой частоты.
Принцип действия цифровых измерительных приборов основан на преобразовании измеряемого непрерывного сигнала в электрический код, отображаемый в цифровой форме. Достоинствами являются малые погрешности измерения (0.1-0,01 %) в широком диапазоне измеряемых сигналов и высокое быстродействие от 2 до 500 измерений в секунду. Для подавления индустриальных помех они снабжены специальными фильтрами. Полярность выбирается автоматически и указывается на отсчетном устройстве. Содержат выход на цифропечатающее устройство. Используются как для измерения напряжения и тока, так и пассивных параметров — сопротивление, индуктивность, емкость. Позволяют измерять частоту и ее отклонение, интервал времени и число импульсов.
Источник