Способ измерение информационного объема

Урок 5
Измерение информации (алфавитный подход). Единицы измерения информации

§4. Измерение информации

Основные темы параграфа:

— алфавитный подход к измерению информации;
— алфавит, мощность алфавита;
— информационный вес символа;
— информационный объем текста;
— единицы информации.

Изучаемые вопросы:

— Алфавит, мощность алфавита.
— 1 бит – информационный вес символа двоичного алфавита.
— N=2b – формула для определения информационного веса символа.
— Информационный объём текста
— Единицы измерения информации: байт, килобайт, мегабайт, гигабайт.

Материал для углубленного изучения темы «Измерение информации»

Изучаемые вопросы:

— Содержательный подход к измерению информации
— Неопределенность знаний
— Формула Хартли

Алфавитный подход к измерению информации

А теперь обсудим вопрос о том, как можно измерять информацию. Существует несколько подходов к измерению информации. Здесь мы рассмотрим только один, который называется алфавитным подходом * .

Алфавитный подход позволяет измерять информационный объем текста на некотором языке (естественном или формальном), не связанный с содержанием этого текста.

Вам хорошо известно, что существуют единицы измерения таких величин, как, например, расстояние, масса, время. Для расстояния — это метр, для массы — грамм, для времени — секунда. Измерение происходит путем сопоставления измеряемой величины с единицей измерения.

* О другом подходе к измерению информации см. в разделе 1.1 материала для углубленного изучения «Дополнение к главе I».

Сколько раз единица измерения укладывается в измеряемой величине, таков и результат измерения. Следовательно, и для измерения информации должна быть введена своя единица измерения.

Алфавит. Мощность алфавита

Под алфавитом некоторого языка мы будем понимать набор букв, знаков препинания, цифр, скобок и других символов, используемых в тексте. В алфавит также следует включить и пробел, т. е. пропуск между словами.

Полное число символов алфавита принято называть мощностью алфавита. Будем обозначать эту величину буквой N. Например, мощность алфавита из русских букв и отмеченных дополнительных символов равна 54: 33 буквы + 10 цифр + 11 знаков препинания, скобки, пробел.

Информационный вес символа

При алфавитном подходе считается, что каждый символ текста имеет определенный информационный вес. Информационный вес символа зависит от мощности алфавита. А каким может быть наименьшее число символов в алфавите? Оно равно двум! Скоро вы узнаете, что такой алфавит используется в компьютере. Он содержит всего 2 символа, которые обозначаются цифрами 0 и 1. Его называют двоичным алфавитом. Изучая устройство и работу компьютера, вы узнаете, как с помощью всего двух символов можно представить любую информацию.

Информационный вес символа двоичного алфавита принят за единицу информации и называется 1 бит.

Читайте также:  Народные способы борьбы с мышами дома

С увеличением мощности алфавита увеличивается информационный вес символов этого алфавита. Так один символ из четырехсимвольного алфавита (N = 4) «весит» 2 бита. Объяснение этому можно дать следующее: все символы такого алфавита можно закодировать всеми возможными комбинациями из двух цифр двоичного алфавита. Комбинацию из нескольких (двух, трех и т. д.) знаков двоичного алфавита назовем двоичным кодом.

Используя три двоичные цифры, можно составить 8 различных комбинаций.

Следовательно, если мощность алфавита равна 8, то информационный вес одного символа равен 3 битам.

Четырехзначными двоичными кодами могут быть закодированы все символы 16-символьного алфавита, и т. д.

Найдем зависимость между мощностью алфавита (N) и количеством знаков в коде (b) — разрядностью двоичного кода.

Заметим, что 2 = 2 1 , 4 = 2 2 , 8 = 2 3 , 16 = 2 4 .

В общем виде это записывается следующим образом:

N = 2b.

Разрядность двоичного кода — это и есть информационный вес символа.

Если число N не равно целой степени двойки, то для определения информационного веса символа поступают следующим образом: берется ближайшее к N, большее N значение М, равное двойке в целой степени: N b . Получаемое отсюда значение b принимается за информационный вес символа. Например, если N = 12, то М = 16 = 2 4 . Отсюда информационный вес символа из алфавита мощностью 12 равен 4 битам. Иначе говоря, 12 символов алфавита кодируются 4-разрядными двоичными кодами.

Информационный объем текста. Единицы информации

Информационный объем текста складывается из информационных весов составляющих его символов. Например, следующий текст, записанный с помощью двоичного алфавита:

1101001011000101110010101101000111010010

содержит 40 символов, следовательно, его информационный объем равен 40 битам.

Сегодня для подготовки текстовых документов чаще всего применяются компьютеры. Алфавит, из которого составляется такой «компьютерный текст», содержит 256 символов. В алфавит такого размера можно поместить все практически необходимые символы: строчные и прописные латинские и русские буквы, цифры, знаки арифметических операций, всевозможные скобки, знаки препинания и пр.

Поскольку 256 = 2 8 , то один символ компьютерного алфавита «весит» 8 битов. Величина, равная восьми битам, называется байтом.

1 байт = 8 битов.

Легко подсчитать информационный объем текста, если известно, что информационный вес одного символа равен 1 байту. Надо просто сосчитать число символов в тексте. Полученное значение и будет информационным объемом текста, выраженным в байтах.

Например, небольшая книжка, подготовленная с помощью компьютера, содержит 150 страниц. На каждой странице 40 строк, в каждой строке 60 символов (включая пробелы между словами). Значит, страница содержит 40 х 60 = 2400 байтов информации. Для вычисления информационного объема всей книги нужно полученную величину умножить на число страниц:

2400 байтов * 150 = 360 000 байтов.

Уже на таком примере видно, что байт — «мелкая» единица. А представьте, что нужно, например, измерить информационный объем целой библиотеки. В байтах это окажется громадным числом!

Для измерения больших информационных объемов используются более крупные единицы:

1 килобайт = 1 Кб = 2 10 байтов = 1024 байта

1 мегабайт = 1 Мб = 2 10 Кб = 1024 Кб

Читайте также:  Как манипулировать мужчиной способы

1 гигабайт = 1 Гб = 2 10 Мб = 1024 Мб

1 терабайт = 1 Тб = 2 10 Гб = 1024 Гб

Следовательно, информационный объем вышеупомянутой книги равен приблизительно 360 килобайтам. А если посчитать точнее, то получится:

360 000 : 1024 = 351,5625 Кб.

351,5625 : 1024 = 0,34332275 Мб.

В заключение еще раз обратим внимание на важное свойство рассмотренного здесь алфавитного подхода. При его использовании содержательная сторона текста в учет не берется. Текст, состоящий из бессмысленного сочетания символов, будет иметь ненулевой информационный объем.

Коротко о главном

Алфавитный подход — это способ измерения информационного объема текста, не связанного с его содержанием.

Алфавит — это вся совокупность символов, используемых в некотором языке для представления информации. Мощность алфавита — это число символов в нем.

1 бит — информационный вес одного символа двухсимвольного алфавита (N = 2).

Информационный вес символа (разрядность двоичного кода) (b) и мощность алфавита (N) связаны формулой: N = 2 b .

Если N не равно двойке в целой степени, то находится большее N, ближайшее к N целое число М = 2 b (b — целое), и из этого равенства определяется b — информационный вес символа.

Информационный объем текста равен сумме информационных весов всех символов, составляющих текст.

1 байт — информационный вес символа из алфавита мощностью 2 8 = 256 символов. 1 байт = 8 битов.

Байт, килобайт, мегабайт, гигабайт, терабайт — единицы измерения информации. Каждая следующая единица больше предыдущей в 1024 (2 10 ) раза.

Вопросы и задания

1. Что такое алфавит?

2. Что такое мощность алфавита?

3. Как определяется информационный объем текста при использовании алфавитного подхода?

4. Текст составлен с использованием алфавита мощностью 64 символа и содержит 100 символов. Каков информационный объем текста?

5. Что такое байт, килобайт, мегабайт, гигабайт, терабайт?

6. Информационный объем текста, подготовленного с помощью компьютера, равен 3,5 Кб. Сколько символов содержит этот текст?

7. Два текста содержат одинаковое количество символов. Первый текст составлен в алфавите мощностью 32 символа, второй — мощностью 64 символа. Во сколько раз различаются информационные объемы этих текстов?

Электронное приложение к уроку

Вернуться к материалам урока
Презентации, плакаты, текстовые файлы Ресурсы ЕК ЦОР
Видео к уроку

Cкачать материалы урока

Источник

Способ измерение информационного объема

Измерение информации: содержательный и алфавитный подходы. Единицы измерения информации.

Вопрос: «Как измерить информацию?» очень непростой. Ответ на него зависит от того, что понимать под информацией. Но поскольку определять информацию можно по-разному, то и способы измерения тоже могут быть разными.

Содержательный подход к измерению информации.
Для человека информация — это знания человека. Рассмотрим вопрос с этой точки зрения.
Получение новой информации приводит к расширению знаний. Если некоторое сообщение приводит к уменьшению неопределенности нашего знания, то можно говорить, что такое сообщение содержит информацию.
Отсюда следует вывод, что сообщение информативно (т.е. содержит ненулевую информацию), если оно пополняет знания человека. Например, прогноз погоды на завтра — информативное сообщение, а сообщение о вчерашней погоде неинформативно, т.к. нам это уже известно.
Нетрудно понять, что информативность одного и того же сообщения может быть разной для разных людей. Например: «2×2=4» информативно для первоклассника, изучающего таблицу умножения, и неинформативно для старшеклассника.
Но для того чтобы сообщение было информативно оно должно еще быть понятно. Быть понятным, значит быть логически связанным с предыдущими знаниями человека. Определение «значение определенного интеграла равно разности значений первообразной подынтегральной функции на верхнем и на нижнем пределах», скорее всего, не пополнит знания и старшеклассника, т.к. оно ему не понятно. Для того, чтобы понять данное определение, нужно закончить изучение элементарной математики и знать начала высшей.
Получение всяких знаний должно идти от простого к сложному. И тогда каждое новое сообщение будет в то же время понятным, а значит, будет нести информацию для человека.
Сообщение несет информацию для человека, если содержащиеся в нем сведения являются для него новыми и понятными.

Читайте также:  Древние способы измерения длины

Алфавитный подход к измерению информации.

А теперь познакомимся с другим способом измерения информации. Этот способ не связывает количество информации с содержанием сообщения, и называется он алфавитным подходом.
При алфавитном подходе к определению количества информации отвлекаются от содержания информации и рассматривают информационное сообщение как последовательность знаков определенной знаковой системы.
Все множество используемых в языке символов будем традиционно называть алфавитом. Обычно под алфавитом понимают только буквы, но поскольку в тексте могут встречаться знаки препинания, цифры, скобки, то мы их тоже включим в алфавит. В алфавит также следует включить и пробел, т.е. пропуск между словами.
Полное количество символов алфавита принято называть мощностью алфавита. Будем обозначать эту величину буквой N. Например, мощность алфавита из русских букв и отмеченных дополнительных символов равна 54.
При алфавитном подходе к измерению информации количество информации зависит не от содержания, а от размера текста и мощности алфавита.
При использовании двоичной системы (алфавит состоит из двух знаков: 0 и 1) каждый двоичный знак несет 1 бит информации. Интересно, что сама единица измерения информации «бит» получила свое название от английского сочетания «binary digit» — «двоичная цифра».

1 бит — это минимальная единица измерения информации!

Один символ алфавита «весит» 8 бит. Причем 8 бит информации — это настолько характерная величина, что ей даже присвоили свое название — байт.

Сегодня очень многие люди для подготовки писем, документов, статей, книг и пр. используют компьютерные текстовые редакторы. Компьютерные редакторы, в основном, работают с алфавитом размером 256 символов.

В любой системе единиц измерения существуют основные единицы и производные от них.

Для измерения больших объемов информации используются следующие производные от байта единицы:

Источник

Оцените статью
Разные способы