- 7 необычных способов использования солнечной энергии
- Солнечные технологии
- Мусор и переработка
- Скорая медицинская помощь
- Транспортные средства
- Одежда
- Зарядные устройства
- Лыжные подъемники
- Краска
- Варианты использования солнечной энергии в хозяйственной деятельности
- Где используется солнечная энергия?
- Особенности использования солнечной энергии
- Как человек использует солнечную энергию?
- Тепловые коллекторы
- Солнечные батареи
- Солнечные электростанции
- Электротранспорт на солнечных батареях
- Прочие направления
- Солнечная энергия — огромный, неисчерпаемый и чистый ресурс
- Преобразование солнечной энергии в электричество
- Как работают панели солнечных батарей
- Компоненты PV ячейки
- Перовскит «удешевит» солнечную энергию
- Солнечная энергия для ЦОД
- Интересно
7 необычных способов использования солнечной энергии
Солнечная энергия становится одной из наиболее востребованных ВИЭ. Рассмотрим необычные методы получения солнечной энергии.
Солнечные технологии не только меняют способ использования энергии, но и заставляют рассматривать различные методы получения солнечной энергии.
Солнечные модули, которые производят электричество для электрической сети или для питания отдельных домов и зданий, уже намного эффективнее, чем раньше. А с 2010 года стоимость солнечных фотоэлектрических панелей снизилась более чем на 60%.
Солнечные технологии
В настоящее время в США имеется достаточное количество солнечной энергии для питания 5,7 миллионов среднего размера домов.
Но солнечные модули на крышах и большие коммунальные солнечные установки — это не единственный способ использования солнечной техники.
Мусор и переработка
В США города стали чаще покупать мусорные баки и перерабатывающие бункеры, оборудованные компакторами на солнечных батареях. Эти устройства используют силу солнца для прессования содержимого.
Путем уплотнения мусора, такие баки существенно увеличивают свою емкость до 80%. Это означает экономию средств на производстве и транспортировке мусора. Поскольку грузовики не должны работать так часто, эти компакторы также приводят к сокращению выбросов парниковых газов.
Эти устройства могут быть даже оснащены интеллектуальными датчиками, которые дают предупреждения, когда пришло время их опустошить.
Скорая медицинская помощь
Солнечные устройства также играют определенную роль в неотложной медицине. Солнечная технология может обеспечить энергией медицинский персонал даже в отдаленных местах или там, где в результате стихийных бедствий другие источники электроэнергии недоступны.
Транспортировочные машины с солнечными батареями на крышах, также могут служить клиниками во время чрезвычайных ситуаций.
Транспортные средства
Все чаще стали появляться электрические автомобили, подзаряжающие от солнечных панелей на корпусе или крыше здания. Стало больше и парковок, покрытых фотопанелями. Это позволяет заряжать машины, которые находятся рядом или под ними.
Первые полностью солнечные автомобили планируются к выпуску в 2019 году. Lightyear One, как говорят разработчики, может проехать почти до 500 миль без необходимости подзарядки.
В 2016 году Solar Impulse 2 стал первым солнечным самолетом, который совершил кругосветное путешествие.
Одежда
Одежда с солнечными панелями время от времени появляется в индустрии моды. Многочисленные дизайнеры создали различные вещи: от футболок до курток, рюкзаков и ювелирных украшений. Футболка, спроектированная голландским дизайнером Полиной ван Донген, может генерировать до одного ватта электричества.
Джайан Томас, исследователь Технологического центра NanoScience в Университете Центральной Флориды, недавно создал нановолоконную нить, которую можно вплетать в одежду. Медный материал имеет небольшие солнечные панели и технологию хранения энергии.
Зарядные устройства
Можно купить зарядные устройства на солнечных батареях для мобильных устройств. Многие из них являются портативными, что позволяет заряжать гаджеты в пути и делает их популярными у любителей на открытом воздухе.
Один из самых популярных солнечных зарядных устройств, X-Dragon, имеет четыре небольших 1,2-ваттных панели и может складываться для транспортировки. А солнечное зарядное устройство XDModo можно вставлять в окно. Если нужна более крупная модель, можно выбрать зарядное устройство Fuse 6W Solar с возможностью крепления.
Лыжные подъемники
Крошечный город в Швейцарии, который называется Тенна, использует солнечные батареи для работы подъемника, который может перевозить до 800 лыжников в час. Система работает от около 80 солнечных панелей, которые автоматически отслеживают движение солнца и самоочищаются.
Подъемник также подключается к электрической сети, если получает недостаточного солнечного света. В солнечные дни он производит вдвое больше энергии, поэтому отправляет ее обратно в сеть для питания остальной части города. В межсезонье он отдает в сеть всю свою энергию.
Краска
В будущем можно будет использовать краску для сбора энергии солнца. Исследователи из Технологического института Королевского Мельбурна разрабатывают солнечную краску, которая поглощает солнечную энергию и влагу из воздуха, а затем разделяет воду на водород и кислород.
Затем водород может приводить в действие топливный элемент. Эта краска потенциально может превратить любой объект в источник энергии. опубликовано econet.ru
Если у вас возникли вопросы по этой теме, задайте их специалистам и читателям нашего проекта здесь.
Понравилась статья? Напишите свое мнение в комментариях.
Подпишитесь на наш ФБ:
Источник
Варианты использования солнечной энергии в хозяйственной деятельности
Энергия солнца представляет собой поток фотонов и имеет огромное значение для всего живого на нашей планете. Солнце обеспечивает существование жизни на Земле, влияя на основополагающие процессы в биосфере. Благодаря солнцу нагреваются моря, реки, поверхность планеты, дует ветер и так далее. Человек уже давно стал использовать свет от солнца в своей хозяйственной деятельности. Но альтернативная энергетика оформилась в качестве самостоятельной отрасли не так давно. Между тем солнечная энергия играет всё более важную роль в хозяйственной деятельности. Как источник тепла солнце используется давно, а в последнее время появляется большое количество устройств и систем для этого. Сегодня мы поговорим о том, как человек использует солнечную энергию.
Где используется солнечная энергия?
Использование солнечной энергии ежегодно увеличивается. Не так давно энергия солнца использовалась для нагрева воды на даче в летнем душе. А сегодня различные установки уже используются для обогрева частных домов, в градирнях. Солнечные батареи вырабатывают электричество, необходимое для обеспечения энергией небольших посёлков.
- Авиация и космическая отрасль;
- Сельское хозяйство. Отопление и обеспечение электричеством теплиц, ангаров и прочих хозяйственных построек;
- Использование солнечной энергии в быту (отопление и электрификация жилых домов);
- Электроснабжение объектов медицины и спорта;
- Использование солнечной энергии для освещения городских объектов;
- Электрификация небольших населённых пунктов.
Использование первых образцов солнечных модулей подтвердило, что энергия солнца имеет существенные плюсы по сравнению с традиционными источниками. Основные преимущества гелиосистем – это практически неограниченный запас, отсутствие вреда окружающей среде, а также бесплатное использование.
Этот список плюсов стоит расширить:
- Стабильное питание, поскольку ток от гелиобатарей не имеет скачков напряжения;
- Автономная работа гелиосистем. Для них не требуется внешней инфраструктуры;
- Срок службы более 20 лет;
- Гелиосистемы практичны и просты в эксплуатации. Основные вложения делают при монтаже.
Особенности использования солнечной энергии
Фотоэнергия излучения солнца преобразуется в фотоэлектрических элементах. Это двухслойная структура, состоящая из 2 полупроводников различного типа. Полупроводник внизу – это p-тип, а верхний − n-тип. У первого недостаток электронов, а у второго − избыток.
На сегодняшний день выпускаются несколько видов фотоэлементов:
- Монокристаллические. Они выпускаются из монокристаллов кремния и имеют равномерную кристаллическую структуру. Среди остальных типов выделяются самым высоким КПД (около 20 процентов) и увеличенной стоимостью;
- Поликристаллические. Структура поликристаллическая, менее равномерная. Стоят дешевле и имеют КПД от 15 до 18 процентов;
- Тонкопленочные. Эти фотоэлементы изготовлены напылением на гибкую подложку аморфного кремния. Такие фотоэлементы дешевле всего, но и КПД у них оставляет желать лучшего. Они используются при производстве гибких солнечных панелей.
Как человек использует солнечную энергию?
Можно выделить две группы систем, которые используются человеком для преобразования энергии солнца в тепловую и электрическую. Это пассивные и активные системы.
Среди примеров пассивных систем для использования энергии солнца можно назвать некоторые строения. При их возведении применялись строительные материалы, имеющие высокую величину поглощения светового излучения. Причём эти строения возводятся с учётом особенностей климата, в котором они построены. Материалы, из которых построены эти дома, используют энергию солнца для освещения и обогрева помещений в здании. В частности, это деревянные полы, светопоглощающие панели, изоляция, ориентация дома на южную сторону.
Благодаря своей конструкции, пассивные системы достигают максимально выгодного использования световой энергии. В результате, за счёт снижения расходов на коммунальные расходы такие дома себя быстро окупают. Эти строения независимы в энергетическом плане и не загрязняют окружающую среду.
Тепловые коллекторы
Эти устройства используют излучение солнца для преобразования его в тепло. Можно выделить следующие основные виды коллекторов:
Плоские. Они наиболее распространены. Их используют как для отопления, так и для горячего водоснабжения. Обычно такие коллекторы используют только в летнее время, поскольку зимой их эффективность резко падает. Об изготовлении таких солнечных коллекторов своими руками можно прочитать по ссылке;
- Вакуумные. Сфера их использования, как и у плоских. Но они используются, когда требуется горячая вода более высокой температуры. В них трубки теплообменника находятся в вакууме внутри стеклянных трубок. Внутри циркулирует теплоноситель. Как правило, такие установки делаются на производстве, а не в домашних условиях. Они функционируют круглый год, даже в российском климате;
- Воздушные. Сфера использование таких устройств – это воздушное отопление и осушительные установки. Могут использоваться при температуре на улице не ниже 5─10 градусов Цельсия;
- Интегрированные коллекторы. Наиболее простая конструкция. Это специальные баки с теплоизоляцией, где нагревается вода. В дальнейшем она используется на хозяйственные нужды.
Солнечные батареи
Эти устройства используют излучение солнца для преобразования его в электрическую энергию. Для этого используются фотоэлектрические элементы. При попадании на них света они вырабатывают электрическую энергию. Один такой фотоэлемент имеет маленькую мощность. Поэтому их последовательно соединяют в батареи. Часто умельцы занимаются созданием таких солнечных батарей своими руками. Подробнее об этом можно прочитать по ссылке.
Солнечные электростанции
В тех регионах мира, где высокая солнечная инсоляция, делают не просто одиночные гелиостанции, а настоящие электростанции промышленного масштаба. Они вырабатывают электричество, объёма которого хватает для обеспечения энергией небольших населённых пунктов. Многие южные страны уже имеют большой процент использования солнечной энергии в своих национальных энергосистемах. Солнечные электростанции вырабатывают электричество или горячую воду. То есть, работают как батареи и коллекторы. К примеру, власти Калифорнии (США) собираются до 2020 года довести долю выработки электричества с гелиоэлектростанций в энергосистеме штата до 30%.
Электротранспорт на солнечных батареях
Постепенно идёт внедрение солнечных батарей на автомобильном транспорте. Образцы, которые целиком работают от солнечных батарей, пока ещё существуют только в виде концепт-каров. Использование их в массовом масштабе на данный момент невозможно.
В них гелиопанели устанавливаются на поверхность кузова и заряжают аккумуляторы. Те, в свою очередь, обеспечивают питание электромотора. Использование батарей в серийных моделях ограничивается тем, что их используют для питания отдельных узлов автомобиля. Подробнее читайте в статье «Солнечная энергия в автомобилестроении».
Прочие направления
Ниже приводятся ещё некоторые примеры того, как человек использует солнечную энергию. Все перечисленные предметы существуют в исполнении, работающем от гелиобатарей:
- Термометр;
- Детские игрушки;
- Фонтан;
- Power bank на солнечных батареях для зарядки различных гаджетов;
- Всевозможные светильники;
- Походные солнечные батареи;
- Радиоприёмник;
- Двигатель;
- Есть даже самолёт на солнечных батареях.
Источник
Солнечная энергия — огромный, неисчерпаемый и чистый ресурс
Солнечная выработка электроэнергии представляет собой чистую альтернативу электроэнергии из добываемого топлива, без загрязнения воздуха и воды, отсутствием глобального загрязнения окружающей среды и без каких-либо угроз для нашего общественного здравоохранения. Всего 18 солнечных дней на Земле содержит такое же количество энергии, какая хранится во всех запасах планеты угля, нефти и природного газа. За пределами атмосферы, солнечная энергия содержит около 1300 ватт на квадратный метр. После того, как она достигнет атмосферы, около одной трети этого света отражается обратно в космос, в то время как остальные продолжают следовать к поверхности Земли.
Усредненные по всей поверхности планеты, квадратный метр собирает 4,2 киловатт-часов энергии каждый день, или приблизительный энергетический эквивалент почти барреля нефти в год. Пустыни, с очень сухим воздухом и небольшим количеством облачности, могут получить более чем 6 киловатт-часов в день на квадратный метр в среднем в течение года.
Преобразование солнечной энергии в электричество
Фотоэлектрические (PV) панели и концентрация солнечной энергии (CSP) объектов захвата солнечного света могут превратить его в полезную электроэнергию. Крыши PV панели делают солнечную энергию жизнеспособной практически в каждой части Соединенных Штатов. В солнечных местах, таких как Лос-Анджелес или Феникс, система 5 киловатт производит в среднем 7000 до 8000 киловатт-часов в год, что примерно эквивалентно использованию электроэнергии типичного домохозяйства США.
В 2015 году почти 800 000 фотоэлектрических систем были установлены на крышах домов по всей территории Соединенных Штатов. Крупномасштабные PV проекты используют фотоэлектрические панели для преобразования солнечного света в электричество. Эти проекты часто имеют выходы в диапазоне сотен мегаватт, а это миллионы солнечных панелей, установленных на большой площади земли.
Как работают панели солнечных батарей
Солнечные фотоэлектрические (PV) панели на основе высокой, но удивительно простой технологии, которая преобразует солнечный свет непосредственно в электричество.
В 1839 году французский ученый Эдмонд Беккерель обнаружил, что некоторые материалы будут испускать искры электричества при ударе с солнечным светом. Исследователи обнаружили, что в ближайшее время это свойство, называемое фотоэлектрический эффект, может быть использовано; первая фотоэлектрическая (PV) ячейка изготовлена была из селена в конце 1800-х годов. В 1950 году ученые в Bell Labs пересматривали технологии и, используя кремний, произведенный в фотоэлементы, смогли преобразовать энергию солнечного света непосредственно в электричество.
Компоненты PV ячейки
Наиболее важными компонентами PV ячейки являются два слоя полупроводникового материала, обычно состоящего из кристаллов кремния. Сам по себе кристаллизирующийся кремний является не очень хорошим проводником электричества, поэтому в него намеренно добавляют примеси — процесс, называемый допинг-этап.
Нижний слой из фотоэлементов обычно состоит из легированного борома, который в связке с кремнием создает положительный заряд (p), в то время как верхний слой, легированный фосфором, взаимодействуя с кремнием — отрицательный заряд (n).
Лишние электроны из n-слоя могут покидать свои атомы, тогда как p-слой эти электроны захватывает. Лучи света «выбивают» электроны из атомов n-слоя, после чего они летят в p-слой занимать пустующие места. Таким способом электроны бегут по кругу, выходя из p-слоя, проходя через нагрузку и возвращаясь в n-слой.
беспилотные самолеты на солнечной энергии
Каждая ячейка генерирует очень мало энергии (несколько ватт), поэтому они сгруппированы в виде модулей или панелей. Панели затем либо используются как отдельные единицы или сгруппированы в более крупные массивы.
Переход к электрической системе с большим количеством солнечной энергии дает много преимуществ.
Стоимость солнечных батарей быстро уменьшается (в 1970 году -1кВт-ч электроэнергии, вырабатываемой с их помощью стоил 60 долларов, в 1980 году – 1доллар, сейчас -20-30 центов). Благодаря этому спрос на солнечные батареи растет на 25% в год, а ежегодный объем от продаваемых батарей превышает (по мощности) 40мВт. КПД солнечных батарей, достигавший в середине 70-х годов в лабораторных условиях 18%, составляет в настоящее время 28,5% для элементов из кристаллического кремния и 35% — из двухслойных пластин из арсенида галлия и антимода галлия. Разработаны многообещающие элементы из тонкопленочных (толщиной 1-2мкм) полупроводниковых материалов: хотя их КПД низок (не выше 16%), стоимость очень мала (не более 10% от стоимости современных солнечных батарей). В скором времени ученые предполагают, что стоимость 1кВт-ч будет равна 10 центам, что поставит солнечную энергетику на первые места в энергетической независимости многих стран.
Перовскит «удешевит» солнечную энергию
Еще в 2013 году новость разнеслась по просторам сети: минерал перовскит произведет революцию в солнечной энергетике. Применение вместо кремния перовскита позволит снизить стоимость производства электроэнергии при помощи солнечных батарей. Перовскит (титанат кальция) был обнаружен в начале 19 века в Уральских горах, назван в честь Л.А. Перовского (известного любителя минералов). Как компонент фотоэлемента начал использоваться в 2009 году.
Батареи покрываются инновационным недорогим фотоэлементом, основное достоинство которого в том, что он может конвертировать в энергию намного большее количество частей солнечного света. Перовскиты представляют собой кристаллическую структуру, которая позволяет с максимальной эффективностью впитывать солнечный свет. По предварительным оценкам использование батарей на основе перовскита может снизить стоимость киловатта энергии в семь раз.
«Главное преимущество новых фотоэлементов заключается не столько в эффективности, сколько в том, что материал чертовски дешев. Батареи на основе перовскита, в которых не используется кремний, могут сделать солнечную энергетику по-настоящему массовой».
Солнечная энергия для ЦОД
10 % всей производимой в мире электроэнергии потребляют серверные фермы. Так как энергоэффективные сети и возобновляемые источники энергии сейчас внедряются во всех отраслях, ЦОД не остались в стороне. Негативное влияние серверных ферм на окружающую среду давно уже на устах экологов. Поэтому владельцы дата-центров стремятся к снижению негативного воздействия своих ЦОД, прибегая к передовым энергосберегающим и «зеленым» технологиям выработки электроэнергии, сюда можно отнести фрикулинг, системы локальных генерирующих мощностей на базе возобновляемых источников энергии.
Как выход — солнечная электростанция рядом с серверной фермой, в тех странах, где это позволяют климатические условия. Она идеальна для серверных ферм, которые развернуты в тропиках или субтропиках. Ведь использование солнечных панелей на крыше ЦОД, кроме того что предоставит «зеленую энергию», так еще и поможет уменьшить тепловую нагрузку на здание, так как создаваемая ими тень минимизирует количество поглощаемого крышей тепла. Гелиоэлектростанция снизит общий негативный эффект дата-центра на экологию, и повысит надежность ЦОД расположенных в регионах, где наблюдаются перебои в работе центральной электросети.
крупная электростанция на базе возобновляемых источников энергии рядом с дата-центром Apple в городе Мейден, штат Северная Каролина (США)
Switch совместно с энергетической компанией Nevada Power начала сооружение рядом с Лас-Вегасом солнечной станции Switch Station мощностью 100 МВт. В американских СМИ компанию Switch называют «возмутителям спокойствия» на рынке коммерческих ЦОД, это один из крупнейших игроков, данной отрасли. Компания занимается сооружением и поддержкой datacenter facilities – зданий и и инженерной инфраструктуры без собственно вычислительной аппаратуры, ее основная модель взаимодействия с клиентами – colocation.
крупнейшая в мире гелиотермальная электростанция Айванпа мощностью 400 МВт
В 2015 году США и Япония начали разрабатывать новый механизм электроснабжения ЦОД за счет солнечной энергии. Проект предполагает исследование новых возможностей «… использования связки генерирующих мощностей на базе солнечной энергии и систем класса HVDC (высокое напряжение постоянного тока), применяемых для распределения генерируемой солнечными батареями электроэнергии на уровне ЦОД». Такое комбинирование HVDC и солнечных панелей даст возможность развернуть единую систему резервного электропитания на базе аккумуляторных батарей, при этом можно будет экономить на капитальных и эксплуатационных расходах.
Интересно
Немецкий архитектор Андре Броезель из компании Rawlemon создал солнечую батарею в форме движущего стеклянного шара. Он называет его генератором нового поколения, который будет ловить максимальное количество лучей, так как он оснащен системой отслеживания перемещения солнца и датчиками смены погоды, а это на 35 % эффективней в сравнении с стандартными солнечными батареями.
Японская энергетическая компания Shimizu Corporation в 2015 году обьявила о своем намерение построить крупную солнечную электростанцию на естественном спутнике нашей планеты — Луне. Электростанция в виде колец с солнечными батареями будет опоясывать Луну по примеру планеты Сатурн и передавать энергию на Землю. От такой солнечной станции Shimizu Corporation ожидает 13 тысяч тераватт энергии/ год. Еще не известна стоимость и дата начала такого космического строительства.
В институте прогрессивной архитектуры в Каталонии разработали солнечную панель, которая может функционировать на растениях, мхе и почве. Плюсом такой технологии является отказ от опасных токсичных материалов и тяжелых металлов в производстве солнечных панелей. Тут используются специальные бактерии в крохотных топливных ячейках, размещенных в земле под корнями растений. Бактерии нужны для выработки дешевой энергии в мини-батареях. Растения будут обеспечивать жизненный цикл бактерий, а вода служить в качестве подпитки для всей системы. Такая инновационная система может работать на территориях, где солнечного света не так уж и много, если заменить растения мхом, так как он может расти в тени.
Источник