Способ интегрирования заменой переменного

Содержание
  1. Лекция 2. Замена переменной и и интегрирование по частям в неопределенном интеграле
  2. Зміст
  3. Тема 1. Неопределенный интеграл, его свойства
  4. 1. Первообразная
  5. 2. Неопределенный интеграл
  6. 3. Свойства неопределенного интеграла
  7. 4. Таблица первообразных
  8. Тема 2. Основные методы интегрирования
  9. 5. Интегрирование подстановкой (заменой переменной)
  10. 6. Интегрирование по частям
  11. 7. Интегрирование простейших рациональных дробей
  12. Замена переменной в неопределенном интеграле
  13. Алгоритм метода замены переменной
  14. Примеры решений
  15. Интегрирование методом замены переменной
  16. Метод замены переменной
  17. Основная формула замены переменной
  18. Важное замечание
  19. Примеры интегрирования заменой переменной
  20. Линейные подстановки
  21. Примеры интегрирования линейными подстановками
  22. Интегрирование заменой переменной
  23. Примеры решения интегралов данным методом
  24. Следствия из метода интегрирования заменой переменной
  25. Замена переменной в неопределённом интеграле.

Лекция 2. Замена переменной и и интегрирование по частям в неопределенном интеграле

Сайт: Навчальний сайт ХНАДУ
Курс: Вища Математика (2 семестр) Вишневецький А.Л.
Книга: Лекция 2. Замена переменной и и интегрирование по частям в неопределенном интеграле
Надруковано: Гість
Дата: субота 20 листопад 2021 06:09

Зміст

Тема 1. Неопределенный интеграл, его свойства

1. Первообразная

Пусть f ( x ) – данная функция.

Определение . Функция F ( x ) называется первообразной для f ( x ) , если

Примеры . x 2 – первообразная для 2 x , т.к. ( x 2 )’ = 2 x . Впрочем, x 2 + 1 и x 2 — 5 – тоже первообразные для 2 x , т.к. ( x 2 + 1)’ = 2 x и ( x 2 — 5)’ = 2 x .

Теорема 1. Если F ( x ) – первообразная для f ( x ) , то

1) F ( x ) + С – тоже первообразная для f ( x ) .

2) Любая первообразная для f ( x ) имеет вид F ( x ) + С для некоторого С.

2. Неопределенный интеграл

Определение . Множество всех первообразных функции f ( x ) называется неопределенным интегралом от этой функции и обозначается так:

Здесь f ( x) dxподынтегральное выражение, f ( x ) – подынтегральная функция, x переменная интегрирования.

Если функция непрерывна на некотором отрезке, то на этом отрезке существует её неопределенный интеграл.

Операции нахождения дифференциала и неопределенного интеграла – взаимно обратные:

3. Свойства неопределенного интеграла

Формул «интеграл от произведения» и «интеграл от частного» функций нет.

4. Таблица первообразных

Таблица проверяется с помощью (1). Формулы № 10, 12, 14 есть обобщение формул № 9, 11, 13. В формулах № 10, 12, 14, 15 a ≠ 0 .

Полная запись формулы №1:

Тема 2. Основные методы интегрирования

5. Интегрирование подстановкой (заменой переменной)

Суть метода: путем введения новой переменной интегрирования (т.е. подста­новки) свести данный интеграл к более простому (желательно – к табличному).

Начнем с формулы замены. Надо найти интеграл

Сделаем подстановку φ(t) = x , где φ(t) — функция, имеющая непрерывную производную. По определению дифференциала, dx = φ'(t)dt . Подставляем в (1):

– формула замены переменной в неопределенном интеграле. После ее примене­ния и вычисления полученного интеграла нужно вернуться к исходной перемен­ной. Формулу (2) применяют как «слева направо», так и «справа налево». Общих методов подбора подстановок не существует.

6. Интегрирование по частям

Теорема . Если функции u = u(x) , ν = ν (x) имеют непрерывные производные, то

Док-во . Интегрируя равенство d(uv) = udv + vdu , получим uv = ∫ udv — ∫ vdu , т.е. (5)

Формула (5) сводит нахождение ∫ udv к нахождению ∫ vdu , поэтому ее приме­няют тогда, когда последний интеграл не сложнее первого. Для применения этой формулы подынтегральное выражение представляют как произведение двух сомножителей, один из которых обозначают u , другой dv . Затем u дифференцируют (находят du ), а dv интегрируют (находят v ).

Укажем способ выбора u и dv в двух типичных случаях. Пусть P(x) – многочлен.

Формулу (5) можно применять повторно. Например, в случае а) это делают n раз, где n – степень многочлена P(x) .

7. Интегрирование простейших рациональных дробей

Простейшие рациональные дроби – это дроби:

1 рода: ( k N ) и 2 рода: (дискриминант знаменателя D n = 1 так:

  • Заменить
  • Разложить интеграл в сумму вида

К первому интегралу применить формулу (4), а второй – табличный (арктангенс).

Источник

Замена переменной в неопределенном интеграле

Замена переменной в неопределенном интеграле используется при нахождении интегралов, в которых одна из функций является производной другой функции. Пусть есть интеграл $ \int f(x) dx $, сделаем замену $ x=\phi(t) $. Отметим, что функция $ \phi(t) $ является дифференцируемой, поэтому можно найти $ dx = \phi'(t) dt $.

Теперь подставляем $ \begin x = \phi(t) \\ dx = \phi'(t) dt \end $ в интеграл и получаем, что:

$$ \int f(x) dx = \int f(\phi(t)) \cdot \phi'(t) dt $$

Эта и есть формула замены переменной в неопределенном интеграле.

Алгоритм метода замены переменной

Таким образом, если в задаче задан интеграл вида: $$ \int f(\phi(x)) \cdot \phi'(x) dx $$ Целесообразно выполнить замену переменной на новую: $$ t = \phi(x) $$ $$ dt = \phi'(t) dt $$

После этого интеграл будет представлен в виде, который легко взять основными методами интегрирования: $$ \int f(\phi(x)) \cdot \phi'(x) dx = \int f(t)dt $$

Не нужно забывать также вернуть замененную переменную назад к $ x $.

Примеры решений

Найти неопределенный интеграл методом замены переменной: $$ \int e^ <3x>dx $$

Выполняем замену переменной в интеграле на $ t = 3x, dt = 3dx $:

$$ \int e^ <3x>dx = \int e^t \frac

<3>= \frac<1> <3>\int e^t dt = $$

Интеграл экспоненты всё такой же по таблице интегрирования, хоть вместо $ x $ написано $ t $:

Если не получается решить свою задачу, то присылайте её к нам. Мы предоставим подробное решение. Вы сможете ознакомиться с ходом вычисления и почерпнуть информацию. Это поможет своевременно получить зачёт у преподавателя!

Ответ $$ \int e^ <3x>dx = \frac<1> <3>e^ <3x>+ C $$

Найти неопределенный интеграл методом замены переменной:

$$ \int \sin^5 x \cos x dx $$

Замечаем, что $ (\sin x)’ = \cos x $, поэтому выгодно сделать замену переменной $$ t = \sin x, dt = \cos x dx $$

Тогда после подставления её в интеграл будем иметь:

$$ \int t^5 dt = \frac <6>+ C = \frac<1> <6>\sin x + C $$

В самом конце очень важно не забывать возвращать замену назад, чтобы получить окончательный ответ.

Пример 2
Ответ
$$ \int \sin^5 x \cos x dx =\frac<1><6>\sin x + C $$

Как обычно анализируем интеграл и замечаем, что в интеграле есть функция и её производная. А именно этой функцией является $ \sqrt $ и её производная $ \frac<1><2\sqrt> $. Поэтому замену переменной сделаем такой: $$ t = \sqrt, dt = \frac<2\sqrt> $$

Подставляем в интеграл и решаем:

$$ \int \frac<\cos \sqrt><\sqrt> dx = 2\int \cos t = 2\sin t + C = $$

Источник

Интегрирование методом замены переменной

Метод замены переменной

С помощью замены переменной можно вычислить простые интегралы и, в некоторых случаях, упростить вычисление более сложных.

Метод замены переменной заключается в том, что мы от исходной переменной интегрирования, пусть это будет x , переходим к другой переменной, которую обозначим как t . При этом мы считаем, что переменные x и t связаны некоторым соотношением x = x ( t ) , или t = t ( x ) . Например, x = ln t , x = sin t , t = 2 x + 1 , и т.п. Нашей задачей является подобрать такую зависимость между x и t , чтобы исходный интеграл либо свелся к табличному, либо стал более простым.

Основная формула замены переменной

Рассмотрим выражение, которое стоит под знаком интеграла. Оно состоит из произведения подынтегральной функции, которую мы обозначим как f ( x ) и дифференциала dx : . Пусть мы переходим к новой переменной t , выбрав некоторое соотношение x = x ( t ) . Тогда мы должны выразить функцию f ( x ) и дифференциал dx через переменную t .

Чтобы выразить подынтегральную функцию f ( x ) через переменную t , нужно просто подставить вместо переменной x выбранное соотношение x = x ( t ) .

Преобразование дифференциала выполняется так:
.
То есть дифференциал dx равен произведению производной x по t на дифференциал dt .

На практике, чаще всего встречается случай, в котором мы выполняем замену, выбирая новую переменную как функцию от старой: t = t ( x ) . Если мы догадались, что подынтегральную функцию можно представить в виде
,
где t′ ( x ) – это производная t по x , то
.

Итак, основную формулу замены переменной можно представить в двух видах.
(1) ,
где x – это функция от t .
(2) ,
где t – это функция от x .

Важное замечание

В таблицах интегралов переменная интегрирования, чаще всего, обозначается как x . Однако стоит учесть, что переменная интегрирования может обозначаться любой буквой. И более того, в качестве переменной интегрирования может быть какое-либо выражение.

В качестве примера рассмотрим табличный интеграл
.

Здесь x можно заменить любой другой переменной или функцией от переменной. Вот примеры возможных вариантов:
;
;
.

В последнем примере нужно учитывать, что при переходе к переменной интегрирования x , дифференциал преобразуется следующим образом:
.
Тогда
.

В этом примере заключена суть интегрирования подстановкой. То есть мы должны догадаться, что
.
После чего интеграл сводится к табличному.
.

Можно вычислить этот интеграл с помощью замены переменной, применяя формулу (2). Положим t = x 2 + x . Тогда
;
;

.

Примеры интегрирования заменой переменной

1) Вычислим интеграл
.
Замечаем, что (sin x )′ = cos x . Тогда

.
Здесь мы применили подстановку t = sin x .

2) Вычислим интеграл
.
Замечаем, что . Тогда

.
Здесь мы выполнили интегрирование заменой переменной t = arctg x .

3) Проинтегрируем
.
Замечаем, что . Тогда

. Здесь, при интегрировании, произведена замена переменной t = x 2 + 1 .

Линейные подстановки

Пожалуй, самыми распространенными являются линейные подстановки. Это замена переменной вида
t = ax + b ,
где a и b – постоянные. При такой замене дифференциалы связаны соотношением
.

Примеры интегрирования линейными подстановками

B) Найти интеграл
.
Решение.
Воспользуемся свойствами показательной функции.
.
ln 2 – это постоянная. Вычисляем интеграл.

.

C) Вычислить интеграл
.
Решение.
Приведем квадратный многочлен в знаменателе дроби к сумме квадратов.
.
Вычисляем интеграл.

.

D) Найти интеграл
.
Решение.
Преобразуем многочлен под корнем.

.
Интегрируем, применяя метод замены переменной .

.
Ранее мы получили формулу
.
Отсюда
.
Подставив это выражение, получим окончательный ответ.

Использованная литература:
Н.М. Гюнтер, Р.О. Кузьмин, Сборник задач по высшей математике, «Лань», 2003.

Автор: Олег Одинцов . Опубликовано: 06-09-2015

Источник

Интегрирование заменой переменной

Суть данного метода заключается в том, что в рассмотрение вводится новая переменная интегрирования или, что тоже самое, делается подстановка. После этого заданный в условии интеграл сводится либо к табличному интегралу, либо к нему сводящемуся.

Если в неопределенном интеграле $\int f(x) d x$ сделать подстановку $x=\phi(t)$, где функция $\phi(t)$ — функция с непрерывной первой производной, то тогда $d x=d(\phi(t))=\phi^<\prime>(t) d t$ и согласно свойству 6 неопределенного интеграла имеем, что:

$\int f(x) d x=\int f(\phi(t)) \phi^<\prime>(t) d t$

Эта формула называется формулой замены переменной в неопределенном интеграле.

После нахождения интеграла по новой переменной $t$ необходимо вернуться к первоначальной переменной $x$.

В некоторых случаях целесообразно делать подстановку $t=g(x)$, тогда

$\int f(g(x)) g^<\prime>(x) d x=\int f(t) d t$

Примеры решения интегралов данным методом

Задание. Найти интеграл $\int x e^> d x$

Решение. Сделаем замену переменной: $x^<2>=t$, далее приведем интеграл к табличному виду и решим его. В конце решения делаем обратную замену.

$$\begin & x^<2>=t & \\ & d\left(x^<2>\right)=d t & \\ \int x e^> d x=\int e^> \cdot x d x & 2 x d x=d t & =\int e^ \cdot \frac<2>= \\ & x d x=\frac <2>\end$$

Ответ. $\int x e^> d x=\frac>><2>+C$

Интегрирование заменой переменной не по зубам? Тебе ответит эксперт через 10 минут!

Задание. Найти интеграл $\int \frac+x \ln x>> d x$

Решение. Упростим подынтегральную функцию, а потом сделаем замену переменной: $\ln x=t$

$$=\int d x+\int \frac<\ln x> d x\left\|\begin \ln x=t \\ \frac=d t \end\right\|=x+\int t d t=x+\frac><2>+C=$$

Ответ. $\int \frac+x \ln x>> d x=x+\frac <\ln ^<2>x><2>+C$

Следствия из метода интегрирования заменой переменной

Используя метод подстановки, можно получить следующие соотношения для некоторых интегралов, которые рационально использовать уже в конечном виде, а не каждый раз производить вычисления:

Аналогично можно показать, что

$\int \cos (k x+b) d x=\frac<1> \sin (k x+b)+C$

$\int \sin (k x+b) d x=-\frac<1> \cos (k x+b)+C$

Подобные соотношения можно было вывести и с использованием метода внесения под дифференциал.

Источник

Замена переменной в неопределённом интеграле.

Итак, друзья, продолжаем наше знакомство с базовыми методами интегрирования! В прошлых уроках мы порешали простенькие интегралы на прямое применение таблицы, а также познакомились с первым базовым методом интегрирования — подведением функции под знак дифференциала . С этого урока уже начнётся серьёзное интегрирование и не менее серьёзные примеры. Так что, у кого пока проблемы с простыми интегралами — читайте предыдущие темы, пока не поздно. 🙂 Почему? А потому, что в этом уроке мы резко расширяем наши возможности! А именно — знакомимся с одним из самых мощных методов интегрирования — методом замены переменной.

И в чём же заключается могущество сего метода? А в том, что в подавляющем большинстве случаев именно он позволяет превращать многие ужасные, на первый взгляд, примеры в белые и пушистые.) Например, интеграл с каким-нибудь страшным корнем или арксинусом после удачной замены может свестись к безобидному многочлену. Или к рациональной функции, которая всяко проще для интегрирования. Имеет смысл разобраться!

Суть замены переменной. Простейшие примеры.

Процедура замены переменной знакома всем вам ещё со школы. Например, решая жуткое тригонометрическое уравнение

что вы обычно делаете? Правильно! Вы заменяете выражение sin x новой буквой — y, z, t — какой хотите. И дальше работаете уже с более простым квадратным уравнением — дискриминант считаете, тыры-пыры…

Всё то же самое и с интегралами.) Принцип тот же. Основная идея любой замены состоит в том, чтобы выражение, которое нам не нравится, заменить новой буквой. И все остальные части примера также выразить через эту самую новую букву. Тогда, если после всех преобразований пример упрощается, то, значит, основная цель данной замены выполнена. 🙂

На прошлом уроке я уже говорил, что метод подведения функции под знак дифференциала — это простейший частный случай более общего метода замены переменной. Теперь настал черёд посмотреть, почему же это именно так и как работает сама процедура замены. Примеров в данном уроке будет не так много, но все они будут разобраны максимально подробно. Чтобы суть уловить.) Рассмотрим все проблемные места, исследуем каждую тонкость.

Начнём сразу с примера. Чтобы далеко не ходить, давайте вернёмся к нашему самому первому примеру из прошлого урока.

Пример 1

Что мы делали в прошлый раз, когда решали этот пример? Сначала мы добивались равенства выражений в показателе экспоненты и под дифференциалом. Для этого мы сначала выражали новый дифференциал d(3x) через старый dx, а уже в самом конце вводили новую переменную 3х = t и сводили наш интеграл к табличному.

Всё решение примера выглядело вот так:

А теперь подойдём к данному примеру немного с другой стороны. Для начала вопрос: что вам больше всего не нравится в данном примере? 99 человек из 100 скажут: три икс! И будут правы. ) Вот и будем от этого самого 3х избавляться. Безопасно для самого примера.)

Для этого поступаем просто и элегантно. Нам ведь в примере не нравится 3х, верно? Вот и заменяем это самое 3х новой буквой! Да-да! Прямо сразу! Безо всяких дифференциалов. Дифференциалы будут потом.)

Так прямо и пишем:

В результате данной замены наша подынтегральная функция превращается в простенькую табличную функцию e t . И наш пример становится уже вот таким:

Но для применения табличной формулы этого пока мало. Почему? А потому, что, раз уж мы ввели новую переменную t, то, ясное дело, и весь пример целиком также должен быть выражен через t! А у нас в примере пока что торчит старый дифференциал dx. Надо бы его тоже как-то превратить в dt. Как? Очень просто!

Чтобы понять, во что же у нас превратится дифференциал dx, самым логичным было бы сначала выразить сам икс через новую переменную t. Здесь это проще простого. Для этого берём наше равенство 3x = t и выражаем из него икс через t. Вот так:

Отлично. Полдела сделано.) И теперь, чтобы выразить интересующий нас дифференциал dx через букву t, просто берём дифференциалы от обеих частей нашего равенства. Думаю, для этой процедуры комментарии уже излишни:

Вот и всё. Вставляем теперь в наш пример вместо dx выражение dt/3, выносим дробь 1/3 за знак интеграла и дорешиваем по таблице. Чистовое оформление примера теперь выглядит немного по-другому. Вот так:

Как видите, ответ получился тем же самым. Что вполне логично.)

Разберём ещё один пример с непосредственной заменой линейной конструкции. На закрепление.)

Пример 2

Напрашивается табличная формула с синусом:

Только э-э-э… в формуле стоит просто икс, а в нашем примере под синусом стоит сложный аргумент 11х+5. Неувязочка… А что, если заменить этот сложный аргумент 11х+5 новой буквой? Ведь именно это выражение нам и не нравится! Посмотрим…

На черновике так прямо и пишем вот такую заготовку:

А теперь посмотрим на решение того же примера методом подведения выражения 11х+5 под дифференциал:

Получили тот же самый ответ, но оформление всё же немного другое. Почувствовали разницу?

В чём сходство этих двух способов? В том, что и там и тут мы заменяем новой буквой одно и то же выражение (в наших примерах это 3х и 11х+5). А отличие этих двух способов состоит лишь в том, на каком этапе решения вводится сама замена. Здесь мы сразу заменяем новой буквой то, что нам не нравится, потом связываем переменные старую с новой, а уж потом, в самом конце, находим связь и между их дифференциалами. А в методе подведения мы сначала связываем сами дифференциалы, а уже потом вводим замену. Или даже вообще не вводим, если уже «руку набили».:)

Как видите, и так и сяк решать можно. Тем, кто крепко дружит с дифференциалами, рекомендую сразу решать подобные интегралы методом подведения. Ибо такое решение гораздо короче. А этот способ, с изначальной заменой, хорош для тех студентов, кто с дифференциалами пока того… не очень…) Или если пример достаточно накрученный. Но зато этот способ более понятен, универсален и надёжен! Спасает в любой ситуации. Если, конечно, удачно выбрана сама замена.)

Это были самые простые примеры, где заменялась линейная конструкция — так, для разминки. Суть ясна, я думаю.)

А теперь разберём примеры посерьёзнее. Такие, где надо заменять не линейные, а более сложные выражения и подвести функцию под дифференциал уже не так-то просто, хоть и возможно. Как и в прошлом уроке, суть этой группы примеров будет заключаться в выделении из подынтегральной функции f(x) какой-то вспомогательной функции g(x) и её производной g’(x). И последующей замене g(x) = t. Здесь уже надо уметь чувствовать и узнавать в функциях производные других функций. В лицо! Зачем? А чтобы удачно подобрать замену! Ведь можно и неудачно подобрать, да. Особенно если плохо знать таблицу производных. Об этом мы уже подробно поговорили на прошлом уроке.)

Пример 3

Внимательно осматриваем пример и ищем в подынтегральной функции конструкцию, которая нам больше всего не нравится. Вот тут, в отличие от предыдущих примеров, уже возможны варианты. Кому-то не понравится корень, кому-то сам по себе корень будет по душе, но не понравится выражение 5х 2 +1, стоящее под корнем. Отдельным индивидуумам может не понравиться множитель x… Что именно заменять — пока не знаем. Всматриваемся дальше. У нас есть подкоренная конструкция 5х 2 +1 и есть множитель х, отдалённо похожий на её производную, так как

Именно это равенство и должно служить ключевой зацепкой!

А не попробовать ли заменить наше сложное подкоренное выражение 2 +1 новой буквой? Что ж, попробуем и посмотрим, к чему это приведёт. Итак, делаем замену:

Тогда наш корень после такой замены превратится в безобидную степенную конструкцию:

Так, с корнем расправились. Но, помимо корня, под интегралом у нас ещё осталось произведение xdx, которое тоже надо выразить через новую букву t, да.

Для этого немного схитрим. Не будем выражать «в лоб» икс через t, а затем искать dx. Это можно, но не нужно. Почему — объясню позже. Давайте сразу продифференцируем наше равенство для замены! Да-да! Целиком! Обе части. Вот так:

5х 2 +1 = t (это равенство — наша замена)

d( 5х 2 +1) = dt (дифференцируем обе части)

(5х 2 +1)’dx = dt (раскрываем дифференциалы)

И что нам даёт эта запись? А то, что из неё теперь легко выражается нужная нам конструкция xdx:

Всё. Начинка интеграла теперь полностью выражена через t. Продолжаем наши игры.)

Подставляем теперь все данные в наш пример и получаем простенький табличный интеграл от степенной функции (n = 1/3, n+1 = 4/3):

Вот и все дела.) Пример разложили по полочкам. А можно ли решить данный интеграл через подведение под значок d? Можно! В одну строчку!

Другое дело, что догадаться, какую именно конструкцию надо подводить под дифференциал, уже гораздо сложнее: легко запутаться в коэффициентах. И под силу не каждому студенту. Поэтому те, кто пока не наловчился в подведении функции под дифференциал — решаем подобные примеры сразу через замену. Аккуратно. Чуть длиннее, зато надёжнее.)

А теперь ответ на вопрос, почему я не стал в явном виде выражать икс через t и затем находить dx. Не стал я этого делать по той причине, что наличие х 2 в подкоренном выражении резко усложняет эту процедуру из-за того, что возникают корни.

Тогда для дифференциала этого самого икса мы получим:

И, если теперь подставить в наш пример отдельные выражения для x и dx, то наши нехорошие корни благополучно сократятся и мы придём к тому же самому интегралу:

Как видите, получили всё то же самое, только выкладки более громоздкие. Поэтому, по возможности, сокращаем объём работы: ошибок меньше будет. 🙂

Иногда встречаются и сюрпризы, когда замену переменной приходится проделывать более одного раза. Ничего страшного! Просто аккуратно заменяем неудобную конструкцию и последовательно упрощаем пример, шаг за шагом добираясь до табличного интеграла. И, конечно, после получения результата корректно осуществляем обратную замену. От новой переменной к предыдущей.)

Пример 4

Что, внушает? Минутку смотрим на пример, ужасаемся, после чего берём себя в руки и вспоминаем золотое правило всей математики:

Не знаешь, что нужно — делай, что можно!

И размышляем. Примерно так:

«Под интегралом нехорошая дробь. Сплошные синусы, аргументы разные — x и 2x. Да ещё и число «пи» затесалось… Кошмар! Но, очевидно, что чем больше одинаковых значков в примере и меньше разных, тем лучше. Поэтому первым делом упрощу-ка я синус двойного угла. По школьной формуле sin 2x = 2sin x·cos x. Поможет ли нам такое преобразование или нет — неясно. Но начинаем-то с самого простого! А там — видно будет.»

Если вы мыслите примерно так, то вы движетесь правильным курсом. Да! Сводим всё подынтегральное выражение к одному аргументу — к иксу. Два икс тут явно ни к чему.

Ну вот, уже лучше. В аргументах остались только иксы. А теперь снова пытаемся выявить родственные функции, опираясь на таблицу производных. Сразу же видно, что в получившейся дроби везде тусуются синусы, а в числителе в качестве множителя затесался косинус. Но косинус — ближайший родственник синуса! Родственник по производной. Ибо таблица производных гласит, что:

Поэтому вводим напрашивающуюся замену sin x = t и продолжаем упрощать наш злой пример:

Отлично. Все синусы пропали напрочь, при этом суть примера не изменилась.

А дальше что делать с этой дробью? Таблица-то не катит! Нету пока подходящей формулы… Тупик? Вовсе нет! Опять внимательно осматриваем нашу дробь, выявляя родню по производной/дифференциалу, и… радостно замечаем, что в числителе стоит дифференциал знаменателя!

Мы же понимаем, что под дифференциал мы имеем право спрятать любую константу! В том числе и «пи».)

А вот теперь снова вводим замену! Да-да!

Тогда вообще красота получится!

Вот и всё. И нету больше никакого «пи»! Спряталось оно под дифференциал. Как и любая константа, да… А ведь как испугало в самом начале! 🙂 Пример становится всё лучше и лучше:

Вот мы и свели ужасную дробь к безобидному табличному интегралу. По шагам, через две замены.) Но радоваться ещё рано, так как это ещё не ответ: нам икс нужен, а не z или t. Поэтому теперь последовательно проводим обратную замену. Тоже по шагам:

Всё. Теперь со спокойной душой записываем окончательный ответ нашего злого примера:

С опытом необходимость так подробно всё расписывать отпадёт сама собой. За ненадобностью. И особо продвинутые студенты этот интеграл легко вычислят в одну строчку вообще без замены! С помощью подведения под дифференциал, ага:

Быстро, правда? И вы тоже так сможете! Причём опыт нарабатывается достаточно скоро. Тренировка — залог успеха.)

Ну как, прониклись? Замена переменной (вкупе с подведением под дифференциал) — оч-чень мощный инструмент для интегрирования! И золотой ключик к успешному решению самых разнообразных примеров. 🙂 Это было начальное знакомство с самой сутью замены, чтобы прочувствовать, как именно она работает.

А со следующего урока мы уже начнём копать глубже и познакомимся с отдельными специфическими видами замен — степенной заменой и тригонометрической заменой. И типовые примеры тоже обязательно порешаем. Посерьёзнее.)

А теперь несколько несложных примеров для тренировки.

Найти неопределённые интегралы

а) методом подведения функции под знак дифференциала,

б) непосредственной заменой переменной,

в) сравнить результаты и проверить ответ дифференцированием.

Ответов здесь тоже не дам. Не вижу смысла. Примеры довольно простые, и материала сегодняшнего и прошлого уроков вполне достаточно для успешной расправы с ними.) Проверяйте окончательный ответ обратным дифференцированием, не ленитесь! 🙂 Выучите таблицу производных! Узнавайте в лицо производные популярных функций. Да-да! Обратное дифференцирование — самый надёжный помощник в интегрировании.

И тогда удача обязательно улыбнётся, поверьте! А у меня пока всё, продолжение следует!

Источник

Читайте также:  Альтернативный способ остановки артериального кровотечения тест ответы
Оцените статью
Разные способы
Пример 3
Найти интеграл с помощью замены переменной: $$ \int \frac<\cos \sqrt><\sqrt> dx $$
Решение