Способ химического анализа это

Содержание
  1. ХИМИ́ЧЕСКИЕ МЕ́ТОДЫ АНА́ЛИЗА
  2. Методы исследования в химии
  3. Методы исследования в химии: определение и классификация
  4. Методы исследования: определение понятия
  5. Классификация современных методов исследования в химии
  6. Методы научного исследования в химии: описание
  7. Общенаучные теоретические методы исследования в химии
  8. Метод наблюдения
  9. Метод описания
  10. Метод моделирования
  11. Метод абстрагирования
  12. Общенаучные эмпирические методы исследования в химии
  13. Метод эксперимента
  14. Метод измерений
  15. Метод анализа
  16. Метод синтеза
  17. Специальные методы исследования в химии
  18. Физические методы исследования в химии
  19. Классические методы исследования в химии
  20. Физико-химические методы исследования в химии
  21. Резонансные методы исследования в химии
  22. Метод гигиенического исследования в химии
  23. Как выбирать методы исследования в химии
  24. Аналитическая химия. Качественный и количественный анализ, титр

ХИМИ́ЧЕСКИЕ МЕ́ТОДЫ АНА́ЛИЗА

  • В книжной версии

    Том 34. Москва, 2017, стр. 62

    Скопировать библиографическую ссылку:

    ХИМИ́ЧЕСКИЕ МЕ́ТОДЫ АНА́ЛИЗА, со­во­куп­ность спо­со­бов ка­че­ст­вен­но­го и ко­ли­че­ст­вен­но­го хи­мич. ана­ли­за, ос­но­ван­ных на вы­пол­не­нии хи­мич. ана­ли­тич. ре­ак­ций ис­сле­дуе­мо­го ве­ще­ст­ва с ви­зу­аль­ным кон­тро­лем их ре­зуль­та­та и/или с на­хо­ж­де­ни­ем ко­ли­че­ст­вен­ной ме­ры (мас­са, объ­ём). Для иден­ти­фи­ка­ции ио­нов в рас­тво­рах ис­поль­зу­ют ре­ак­ции с ана­ли­тич. реа­ген­та­ми, ре­зуль­тат про­те­ка­ния ко­то­рых (об­ра­зо­ва­ние ха­рак­тер­но­го осад­ка, из­ме­не­ние ок­ра­ски рас­тво­ра, вы­де­ле­ние га­за с рас­по­зна­вае­мы­ми свой­ст­ва­ми и др.), на­зы­вае­мый ана­ли­тич. сиг­на­лом, сви­де­тель­ст­ву­ет о при­сут­ст­вии ио­на. Ко­ли­че­ст­вен­ный ана­лиз вклю­ча­ет гра­ви­мет­ри­че­ский ана­лиз , тит­ри­мет­ри­че­ский ана­лиз , га­зо­вый ана­лиз . Ос­но­ва ко­ли­че­ст­вен­но­го ана­ли­за – из­ме­ре­ние ко­ли­че­ст­ва про­дук­та хи­мич. ре­ак­ции оп­ре­де­ляе­мо­го ве­ще­ст­ва (напр., мас­сы осад­ка по­сто­ян­но­го со­ста­ва), рас­хо­да реа­ген­та точ­но из­вест­ной кон­цен­тра­ции, по­тре­бо­вав­ше­го­ся для осу­ще­ст­в­ле­ния ко­ли­че­ст­вен­ной ана­ли­тич. ре­ак­ции с оп­ре­де­лён­ным объ­ё­мом рас­тво­ра оп­ре­де­ляе­мо­го ве­ще­ст­ва, умень­ше­ния объ­ёма га­за вслед­ст­вие из­би­рат. по­гло­ще­ния отд. ком­по­нен­тов сме­си рас­тво­ра­ми реа­ген­тов (ис­поль­зу­ют ред­ко). Ко­ли­че­ст­вен­ный ана­лиз при­ме­ня­ют для оп­ре­де­ле­ния осн. ком­по­нен­та или при­ме­сей с от­но­сит. по­греш­но­стью до 1% (тит­ри­мет­рия) и 0,1% (гра­ви­мет­рия).

    Источник

    Методы исследования в химии

    • 16 ноября 2021 г.
    • 15 минут
    • 162

    Цель курсовой или дипломной по химии — это конечная точка, к которой должен прийти студент в своём исследовании. Задачи — пункты, составляющие маршрут. А методы — способы, которые помогают успешно справиться со всеми вызовами в пути и достичь поставленной цели.

    А какие именно теоретические и экспериментальные методы исследования чаще всего используют в химии? В чём их особенности и отличия от других? Обо всё этом расскажем в статье, а также приведём примеры, как применяют методы исследования в химии.

    Не забудьте подписаться на наш информационный канал в Telegram — в нём мы публикуем актуальные и полезные новости. И следите за акциями и скидками от компании.

    Доверь свою работу кандидату наук!

    Узнать стоимость бесплатно

    Методы исследования в химии: определение и классификация

    Методы исследования: определение понятия

    Прежде чем мы рассмотрим, какие современные методы исследования используют в химии, давайте дадим научное определение этому понятию:

    Методы исследования — это способы познания в научно-исследовательских работах, которые включают в себя специфические методики, приёмы и подходы. Все методы, используемые в процессе, составляют методологическую базу исследования.

    Классификация современных методов исследования в химии

    Химия — практическая наука. Именно поэтому большинство работ по этой научной дисциплине имеют экспериментально-аналитический характер. Соответственно большинство методов исследования веществ, соединений, реакций и явлений в химии относятся к эмпирическим.

    Для удобства мы разделили самые популярные методы исследования на три большие группы:

    • общенаучные теоретические методы исследования в химии;
    • общенаучные эмпирические методы исследования в химии;
    • специальные методы исследования в химии.

    Проводя химические опыты, соблюдайте правила безопасности

    Первые две группы методов встречаются в методологиях других наук, а специальные, или узкоспециализированные — только в химических исследованиях.

    В химии применяют разные методы, в том числе и междисциплинарные. Это методологические приёмы, которые решают задачи смежных наук. Например, физико-химический анализ подходит для физических, химических, биологических и даже исторических исследований.

    Методы научного исследования в химии: описание

    Чтобы выбрать методы, которые лучше всего помогут раскрыть тему вашего исследования, стоит разобраться, что они из себя представляют и для каких задач применяются.

    Общенаучные теоретические методы исследования в химии

    Самыми востребованными теоретическими методами в химии являются:

    • наблюдение;
    • описание;
    • моделирование;
    • абстрагирование.

    Кстати! Для наших читателей сейчас действует скидка 10% на любой вид работы.

    Метод наблюдения

    Наблюдение — это внешнее изучение определённых химических явлений или веществ. Как правило, чтобы этот метод был эффективным, исследователь должен соблюдать следующие условия:

    Только соблюдая условия, можно получить чёткие результаты и не запутаться в большом количестве данных.

    Пример: провести наблюдение за химической реакцией сульфита меди и хлорида натрия.

    Метод описания

    Метод описания в химии чаще всего дополняет другие методы. С его помощью перечисляют основные признаки веществ и изображают химически проведённые опыты.

    Пример: описать состав комплексных химических соединений тетрафторобериллат (II) калия и тетрагидридоалюминат (III) лития.

    Метод моделирования

    В химии далеко не все химические реакции можно провести в лаборатории. Для сложных явлений используют метод моделирования. С его помощью создают модели, по которым проверяют выдвинутые гипотезы.

    Применяют две группы моделей:

    1. Предметные — с их помощью изучают строение атомов, кристаллов и других веществ.
    2. Символьные — их используют, чтобы исследовать уравнения реакций и формулы химических элементов.

    Пример: провести молекулярное моделирование структурного состава атома водорода.

    Метод абстрагирования

    Метод абстрагирования применяют, когда необходимо отбросить несущественные показатели и более подробно исследовать общие закономерности химических веществ и явлений.

    Пример: изучить общие свойства неорганических веществ.

    Общенаучные эмпирические методы исследования в химии

    К методам экспериментальных исследований в химии относят:

    Метод эксперимента

    Чем отличается эксперимент от наблюдения? Тем, что экспериментальные опыты — это всегда активное воздействие на изучаемый материал. Эксперимент проводят в контролируемых условиях и используют для практической части исследования.

    Пример: провести химические опыты, позволяющие очистить загрязненную поваренную соль.

    Метод измерений

    Без метода измерений в химической науке никуда. Ведь мало просто провести научный эксперимент и описать реакцию. Надо понимать, какие показатели измерять и как их сравнивать, чтобы делать правильные выводы.

    Пример: измерить физико-химические показатели горючего.

    Метод анализа

    Аналитические методы в современных исследованиях химии очень важны. Они помогают изучать химические вещества с разных сторон, специально проводить нужные реакции и получать обоснованные выводы.

    Пример: провести сравнительный анализ методов получения бутандиола-1,4.

    В химии существует большое количество различных видов анализа. Их можно смело отнести к следующей группе методов — специальных.

    Существует даже целая отдельная отрасль — аналитическая химия, в которой существуют собственные методы исследования: методы разделения и концентрирования, метод испарения, гравиметрический анализ, титриметрический анализ, хроматографические методы и так далее.

    Метод синтеза

    Метод синтеза в химии помогает получать новые вещества в процессе химических реакций. Он также важен, как и анализ. Его часто применяют в качестве метода исследования в органической химии.

    Пример: описать историю химического синтеза и его важное значение для науки.

    Специальные методы исследования в химии

    К специальным в химии относятся методы исследования, которые обладают практическим характером. Их применение связано с изучением количественного состава и химических свойств различных соединений.

    Таких методов довольно много, но условно их можно разделить на три большие группы:

    Физические методы исследования в химии

    Физические методы в химии — это методы исследования, которые изучают физические параметры химических веществ. Среди наиболее часто встречающихся физических методов можно назвать:

    • рефрактометрический метод — измеряет показатели преломления;
    • поляриметрический метод — исследует оптическое вращение в химических веществах;
    • флуориметрический метод — изучает интенсивность, с которой выделяется излучение.

    Пример: определить, как изменилось излучение после воздействия на разные химические вещества.

    Классические методы исследования в химии

    Классические методы исследования помогают изучать химические растворы, газы, тела и другие элементы через различные виды реакций. Существует несколько разновидностей данных методических приёмов:

    • гравиметрический метод — служит для определения точного веса химических веществ;
    • титриметрический, или объёмный метод — измеряет точное количество реагентов;
    • газовый метод — позволяет измерять объём газов.

    Пример: решить ряд химических уравнений, в ходе которых необходимо вычислить количество вещества, исходя из его объёма в газообразном состоянии.

    Физико-химические методы исследования в химии

    Физико-химические методы позволяют исследователю наблюдать и фиксировать, какие физические изменения происходят в веществах после того, как произошла химическая реакция. Среди них:

    • резонансные методы;
    • гигиенический метод.
    Читайте также:  Что такое приставочно суффиксальный способ наречия

    Резонансные методы исследования в химии

    Самые известные методологические приёмы в этой группе — это резонансные методы исследования в химии:

    • метод ядерного магнитного резонанса;
    • метод электронного парамагнитного резонанса.

    Резонансные методы помогают изучить структурные и динамические изменения в молекулах, ионах и других элементах в различных химических фазах, например, в конденсированной или газообразной.

    Пример: изучить, как распределяются электроны в молекулах с помощью резонансного метода исследования.

    Метод гигиенического исследования в химии

    К физико-химическим методам также относится метод гигиенического исследования. Его применение связано с очень практическими целями:

    • оценить качество определённого вещества, чтобы выявить химические осадки и их предельно допустимые значения для гигиенической безопасности.

    Пример: провести санитарно-химический анализ воды, позволяющий оценить уровень хлора, сульфата и хлорида в составе.

    Как выбирать методы исследования в химии

    Практически любое грамотное химическое исследование строится на пяти основных этапах:

    1. Наблюдение за объектом исследования и его свойствами.
    2. Изучение и обобщение полученных результатов.
    3. Выдвижение предварительной гипотезы.
    4. Организация и проведение экспериментальных опытов.
    5. Обоснование химической теории, выводы исследования.

    Поэтому и методологию стоит составлять из методов, которые помогут на каждом этапе всесторонне изучить объект и получить конкретные результаты.

    Например, выбирая физико-химические методы исследования в органической химии, не забывайте об основе — теоретическом наблюдении и анализе химических материалов, полученных экспериментально.

    Мы разобрали некоторые методы исследований, которые применяют в органической и неорганической химии. Теперь у вас есть хороший инструментарий, чтобы провести свою исследовательскую работу. А если нет времени писать лабораторную, курсовую или диплом по химии самостоятельно, обращайтесь в студенческий сервис. Наши специалисты помогут определиться с методами исследования и сдать работу даже по самой сложной теме точно в срок.

    «Я видала такую чепуху, по сравнению с которой эта чепуха — толковый словарь» (Льюис Кэрролл «Алиса в стране чудес»). Любительница йоги, спиральной динамики и душевных разговоров 😊

    Источник

    Аналитическая химия. Качественный и количественный анализ, титр

    » data-shape=»round» data-use-links data-color-scheme=»normal» data-direction=»horizontal» data-services=»messenger,vkontakte,facebook,odnoklassniki,telegram,twitter,viber,whatsapp,moimir,lj,blogger»>

    ОСНОВНЫЕ ПОНЯТИЯ АНАЛИТИЧЕСКОЙ ХИМИИ

    • 1.1. Виды и методы проведения химического анализа
    • 1.2. Качественный анализ
    • 1.3. Количественный анализ
    • 1.4. Измерения в аналитической химии
    • 1.5. Химический эквивалент
    • 1.6. Титр раствора

    Виды и методы проведения химического анализа

    Аналитическая химия — наука о методах определения химического состава вещества и его структуры. Выделяют качественный и количественный анализ.

    Качественный анализ — установление присутствия или отсутствия отдельных компонентов в анализируемом объекте.

    Количественный анализ — определение содержания компонентов в анализируемом объекте. Качественный анализ предшествует количественному. Результат его — «да — нет».

    В качественном анализе различают:

    • • элементный анализ (определение входящих в пробу элементов);
    • • вещественный анализ (определение химических соединений).

    В зависимости от массы пробы вещества, используемого для проведения анализа, методы анализа классифицируют следующим образом:

    • • макрометод (0,1 г вещества и более);
    • • полумикрометод (0,1–0,01 г);
    • • микрометод (10 –2 –10 –3 г);
    • • ультрамикрометод (10 –3 –10 –6 г);
    • • субмикрометод (10 –6 –10 –9 г).

    Методы анализа подразделяются на химические и физико-химические (инструментальные). Химические методы анализа основаны на способности определяемого компонента вступать в химическую реакцию с последующим определением его количества.

    Достоинства химического метода анализа:

    Недостатки химического метода анализа

    • • требуется много времени;
    • • сложная подготовка пробы.

    Химические реакции, пригодные для качественного анализа, должны сопровождаться заметным внешним эффектом. Это может быть:

    • выделение газа;
    • изменение окраски раствора;
    • выпадение осадка;
    • растворение осадка;
    • образование кристаллов характерной формы.

    В первых четырех случаях за протеканием реакции наблюдают невооруженным глазом, кристаллы рассматривают под микроскопом. Классификация видов химического анализа по объектам определения приведена в табл. 1.1.

    Таблица 1.1 Классификация видов химического анализа по объектам определения

    В физико-химических методах анализа конец реакции определяют не визуально, как в химических методах, а при помощи приборов, которые фиксируют изменения физических свойств исследуемого вещества.

    Качественный анализ

    Для получения достоверных результатов анализа конкретного иона необходимы реакции, выполнению которых не мешает присутствие других ионов. Для этого нужны специфические реагенты (взаимодействующие только с определяемым ионом).

    Примером реакции с участием специфического реагента является выделение газообразного аммиака NH 3 при действии щелочей (KOH или NaOH) на вещество, содержащее ион аммония NH4 +. Ни один катион не помешает обнаружению иона NH4+, потому что только он реагирует со щелочами с выделением аммиака:

    . Еще один пример — специфические реагенты на ионы железа. Специфический реактив гексацианоферрат (III) калия К3[Fе(СN)6] (красная кровяная соль) образует синий осадок (турнбуллева синь) только с ионами двухвалентного железа Fe 2+. Гексацианоферрат (II) калия K4[Fe(CN)6] (желтая кровяная соль) образует синий осадок (берлинская лазурь) только с ионами трехвалентного железа Fe3+. Специфический реагент на ионы меди (II) — аммиак:

    Окрашивание пламени горелки является также способом определения некоторых катионов, т. е. качественной реакцией на их присутствие:

    Li + — окрашивание пламени в красный цвет;

    Na + — окрашивание пламени в желтый цвет;

    K + — окрашивание пламени в фиолетовый цвет.

    Селективные реагенты — это реагенты, которые реагируют лишь с немногими веществами. Диметилглиоксим (реагент Чугаева) служит примером селективного реагента в щелочной среде он реагирует с ионами Ni +2, Co +2, Fe +2; в кислой — только с ионами Pd +2.

    К сожалению, селективных, а тем более специфических реагентов очень мало. Поэтому смеси катионов и анионов разделяют на части с помощью реактива, который называется групповым реактивом.

    Действуя на смесь катионов в строго определенном порядке растворами соляной кислоты HCl, серной кислоты H2SO4, аммиака NH3 и гидроксида натрия NaOH, можно разделить содержащиеся в смеси катионы на шесть аналитических групп. Эти растворы называются групповыми реагентами, а схема — кислотно-щелочной (по используемым групповым реагентам).

    В сероводородной схеме групповыми реагентами являются соляная кислота HCl, сероводород H2S и карбонат аммония (NH4)2CO3.

    Разделение катионов на пять аналитических групп основано на различии свойств образуемых ими хлоридов, сульфидов и карбонатов:

    • I группа K +, Na +, NH +4, Mg +2 — группового реагента нет, поэтому эти катионы остаются в растворе после отделения других групп;
    • II группа Ba +2, Ca +2, Sr +2 — групповой реагент (NH4) 2 CO 3 осаждает карбонаты этих катионов;
    • III группа Al +3, Cr +3, Fe +3, Fe +2, Ni +2, Co +2, Mn +2, Zn +2 — групповой реагент (NH4) 2 S осаждает гидроксиды Al +3 и Cr +3 и сульфиды остальных катионов;
    • IV группа Cu +2, Cd +2, Hg +2, Bi +3, As +3, Sn +2, Sn +4, Sb +2 — групповой реагент H 2 S осаждает сульфиды этих катионов;
    • V группа Ag +, Pb +2 и Hg +2 — групповой реагент HCl — осаждает хлориды этих катионов.
    Читайте также:  Манга удивительно наглядный способ таро куна

    Общепринятой классификации для разделения анионов, как для разделения катионов, не существует. Используют разделение анионов на три аналитические группы по растворимости солей бария и серебра.

    • ● Первая группа сульфат-ион SO 4 –2, сульфит-ион SO 3 –2, тиосульфат-ион S 2 O 3 –2 , карбонат-ион CO 3 –2, фосфат-ион PO 4 –3, силикатион SiO 3 –2, борат-ионы BO 2 – или B 4 O 7 –2.
      Групповой реагент — ВаСl2 в нейтральной или слабощелочной среде. Соли бария малорастворимы в воде, но растворяются в разбавленных кислотах (за исключением BaSO4).
      Например, важнейшими промышленными солями бария являются хлорид, карбонат и сульфат. Технический продукт содержит 80−90 % ВаО2 и окрашен соединениями железа в желтоватый или зеленоватый цвет. Зеленая окраска пламени — «визитная карточка» бария, даже если он присутствует в микроколичествах.
      Барий присутствует в крови, мышцах, головном мозге, селезенке и даже в хрусталике глаза. Опасность для человека несут водорастворимые соли бария, а именно карбонаты, сульфиды, нитраты.
      Всасывание растворимых солей бария в желудочно-кишечном тракте составляет около 10 %, иногда этот показатель доходит до 30 %. Гомеопаты рекомендуют принимать углекислый барий пожилым людям, страдающим ожирением, когда присутствуют симптомы склероза.
    • ● Вторая группа хлорид-ион Cl –, бромид-ион Br –, йодид-ион I –, сульфид-ион S –2 и др. Серебряные соли малорастворимы в воде и в HNO3.
      Групповой реагент — AgNO3 в присутствии HNO3.
      Например, сульфид-ион — хороший восстановитель и окисляется большинством известных окислителей, даже кислородом воздуха. Реакция восстановления бромат-ионов бромид-ионами или йодид-ионами протекает в кислой среде.
      Йодид-ионы окисляются гораздо легче, чем хлорид- или бромидионы. Хлорид-ион обесцвечивает перманганат калия при нагревании. В присутствии сульфид-ионов появляется осадок свободной серы.
      Основным источником хлорид-ионов является поваренная соль, используемая при приготовлении пищевых продуктов. Хлориды обладают высокой миграционной способностью благодаря хорошей растворимости. У животных и человека ионы хлора участвуют в поддержании осмотического равновесия.
    • ● Третья группа нитрат-ион (NO3) – , нитрит-ион (NO2) – и др. Соли бария и серебра растворимы в воде. Группового реагента нет.
      В отличие от катионов, анионы обычно не мешают обнаружению друг друга. Систематический анализ используют в редких случаях.
      Например, широко известно также применение нитритов для консервирования пищевых продуктов. Предельно допустимая концентрация нитритов в воде водоемов (ПДКв) установлена в размере 3,3 мгдм 3 в виде иона (NO2) –.

    Методы качественного анализа классифицируют следующим образом:

    — анализ сложных смесей.

    Количественный анализ

    Количественный анализ проводят после проведения качественного химического анализа, т. е. после установления компонентов анализируемой пробы.

    Например, общие свойства спиртов изучают химики-органики, а способы определения спиртов как класса органических соединений и каждого отдельного спирта (например, этанола) разрабатывают аналитики. Для этого они выявляют те особенности химических и физических свойств спиртов, которые отличают их от других органических соединений. Еще важнее выявить характеристические свойства отдельных спиртов (например, этанола), отличающие их друг от друга.

    Изучение характеристических свойств индивидуальных объектов особенно важно в тех случаях, когда изучают материалы сложного состава, содержащие смеси родственных веществ.

    Также аналитическая химия воспринимает и развивает знания, полученные в рамках смежных научных дисциплин. Разумеется, знания, полученные одной наукой и используемые другой, всегда существенно перерабатываются, подобно тому, как в организме продукты питания превращаются в новые соединения, а уже из них строятся собственные ткани организма. Эта аналогия подходит и для рассматриваемого случая. На основе творчески переработанных достижений других наук и собственных фундаментальных исследований аналитики выявляют общие закономерности химического анализа, создают новые методы и методики.

    К химическим методам количественного анализа относятся:

    В ходе количественного анализа можно выделить основные его этапы:

    • 1) отбор средней пробы;
    • 2) взятие навески;
    • 3) перевод пробы в раствор;
    • 4) отделение определяемого компонента и его концентрирование;
    • 5) количественное измерение;
    • 6) расчет результатов анализа.

    Волюмометрические методы анализа основаны на измерении объема реагента, израсходованного на взаимодействие с веществом.

    Кинетические методы анализа заключаются в определении зависимости скорости химической реакции от концентрации реагирующих веществ.

    Для решения аналитических задач довольно широко применяют биохимические реакции с участием ферментов, а также исключительно специфические реакции, протекающие по схеме «антиген — антитело» (иммуноанализ). Весьма перспективным способом получения информации о составе веществ оказалось изучение реакции живых клеток, тканей, органов и организмов на изменения в составе окружающей их среды. Естественно, соответствующие методы анализа создают на базе достижений биологических наук.

    Методика исследования. Чтобы подобрать оптимальную (лучшую) методику химического анализа, в каждом случае следует учитывать ряд практических требований

    1. Точность. Это главное требование. Оно означает, что относительная или абсолютная погрешность анализа не должна превышать некоторого предельного значения. Для разных видов анализа, безусловно, требуется разная точность. В одних случаях достаточно, чтобы результат был получен с относительной погрешностью, не превышающей 10 или даже 20%, в других — чтобы погрешность была менее 2 %. При проведении арбитражных анализов относительная погрешность не должна превышать 0,1 или даже 0,01%. Столь высокую точность могут дать лишь некоторые методы и немногие методики. 15 Не следует добиваться высокой точности, если она не требуется, ведь высокая точность обходится очень дорого.

    2. Чувствительность. Этим понятием иногда заменяют более строгие термины «предел определения», «нижняя граница определяемых концентраций». Высокочувствительные методики — это те, по которым мы можем обнаружить и определить компонент даже при низком его содержании в исследуемом материале. Чем ниже ожидаемое содержание, тем более чувствительная методика требуется.

    3. Селективность. Важно, чтобы на результат анализа не оказывали влияния другие вещества, входящие в состав пробы. Чем меньше таких веществ, чем слабее выражено влияние каждого из них, тем избирательнее методика. Если посторонние вещества вообще не воздействуют на результат анализа, методику называют специфической. Разработать селективную, а тем более специфическую методику анализа очень трудно. Примером может служить методика обнаружения гемоглобина, «созданная» героем одного из произведений А. Конан Дойля. Основным достижением Шерлока Холмса как химика-аналитика стала специфичность разработанной им методики; некий осадок образовывался только в присутствии гемоглобина, что достоверно указывало на наличие следов крови на одежде подозреваемого. На самом деле специфические и высокочувствительные методики обнаружения следов крови появились лишь в середине XX в. С их помощью теперь можно установить, принадлежит обнаруженная кровь человеку или животному, может она принадлежать подозреваемому или нет и т. п.

    4. Экспрессность. Речь идет о продолжительности анализа одной пробы — от пробоотбора до выдачи заключения. Чем быстрее будут получены результаты, тем лучше.

    5. Стоимость. Эта характеристика методики не требует комментариев. В массовом масштабе можно применять лишь относительно недорогие анализы. Стоимость аналитического контроля в промышленности обычно не превышает 1 % стоимости продукции. Очень дорого стоят уникальные по сложности и редко выполняемые анализы.

    Читайте также:  Способы увеличения размера кольца

    Существуют и другие требования к методике — безопасность выполнения анализа, возможность проводить анализ без непоредственного участия человека, устойчивость результатов к случайным колебаниям условий и т. п.

    Для наиболее распространенных и часто выполняемых анализов методики изложены в специальных нормативных документах, например государственных стандартах (ГОСТах). В стандартных методиках используют распространенные приборы, общеизвестные способы расчета, привычные приемы анализа. Периодически (один раз в 5–10 лет) ГОСТы обновляют и утверждают заново.

    Отбор средней пробы. Это очень важная стадия анализа. С отбора проб начинается проведение химического анализа. Техника отбора средней пробы описывается в специальных инструкциях, ГОСТах. Нужно найти такую пробу по составу, чтобы она отвечала действительному среднему составу анализируемого вещества. Особенно трудно выбрать среднюю пробу твердого вещества. В этом случае используются следующие действия размалывание, высверливание, распиливание, дробление.

    При санитарно-эпидемиологической экспертизе отбор проб пищевых продуктов проводит, как правило, врач по гигиене питания, при его отсутствии — помощник санитарного врача. При производственном контроле его проводит специально обученный работник данного предприятия, имеющий свидетельство о прохождении обучения.

    Порядок отбора проб пищевых продуктов при экспертизе партии включает выделение однородной партии, определение числа и отбор точечных проб, составление объединенной пробы и формирование из нее средней, которая направляется на лабораторные исследования. Экспертиза партии проводится в соответствии с действующей инструкцией о порядке проведения гигиенической экспертизы пищевых продуктов в учреждениях госсанэпидслужбы. Пример отбора и хранения проб представлен на рис. 1.1.

    Рис. 1.1. Отбор и хранение проб тканей и кормов

    Измерения в аналитической химии

    Результаты количественного химического анализа оценивают такими метрологическими характеристиками, как правильность, воспроизводимость и точность.

    Правильность — качество измерений, отражающее близость к нулю систематических погрешностей.

    Воспроизводимость — качество измерений, выполненных в различных условиях, но свидетельствующих о близости результатов друг другу.

    Точность — качество измерений, показывающее близость их результатов к истинному значению измеряемой величины. Точность измерения соответствует малым погрешностям всех видов. Количественно она выражается обратной величиной модуля относительной погрешности. Погрешность в расчетах приводит к получению неверных результатов химического анализа. Кроме того, есть еще погрешность (ошибка) измерений (∆). Это отклонение результата измерения (Х) от истинного значения измеряемой величины (μ). Абсолютная погрешность определяется по формуле:

    относительная погрешность (%) — по формуле

    Истинное значение можно получить путем анализа образца множеством различных независимых методов анализа. Анализ его проводят в форме межлабораторного эксперимента (проводится анализ разными лабораториями). Затем проводят оценку массива данных. Также можно использовать стандартный образец (с известным содержанием компонента) для анализа.

    Если погрешность при повторных измерениях остается постоянной, то это систематическая погрешность (имеет знак плюс или минус). Если погрешность изменяется случайным образом, то это случайная погрешность (имеет знак и плюс, и минус). Грубые погрешности, существенно отличающиеся от истинного значения, называются грубой ошибкой.

    Все погрешности зависят от класса точности прибора и от профессионализма химика-аналитика. Применение статистической обработки образцов рассмотрим на примере анализа пробы сточной воды. Трижды было определено содержание фенола стандартной методикой (DIN 38 409 H 16). Найдено среднее значение содержания фенола в пробе (0,51 гл). Предельно допустимая концентрация фенола в сточных водах в странах ЕС составляет 0,5 гл. Можно ли сказать, что концентрация превышена Статистические тесты помогут учесть степень разброса данных.

    Предел обнаружения — минимальная концентрация вещества, которая может быть обнаружена методом. Возможность обнаружения вещества с помощью любой аналитической методики ограничена. Особенно это важно при определении следовых количеств веществ.

    Основной химической величиной является количество вещества (n), а основной единицей измерения — моль. По определению, 1 моль — количество вещества, содержащее столько частиц, сколько атомов содержится в 0,012 кг изотопно чистого простого вещества 12 C. Оно составляет приблизительно 6,02214·10 23 частиц. Таким образом, по смыслу количество вещества есть число частиц, составляющих вещество. Эту величину не следует отождествлять ни с массой, ни с объемом, ни с какими иными физическими характеристиками.

    Наряду с количеством вещества в химии широко используют и производные от него величины. Важнейшая из них — концентрация (c), представляющая собой количество вещества (n) в единице объема V:

    Единица измерения концентрации — моль/л. В дальнейшем все химические величины, как само количество вещества, так и производные от него, мы будем обозначать собирательным термином «содержание».

    При проведении анализа часто компонент переводится в раствор. Состав раствора количественно выражается через относительные величины — доли (массовые, мольные, молярные) и размерные величины — концентрации.

    Массовая доля — безразмерная относительная величина, равная отношению массы компонента к общей массе образца, раствора, смеси веществ.

    Единицей измерения массовой доли является также процент (сотая доля числа — %), промилле (тысячная доля числа, 110 доля процента — ‰), ppm (миллионная доля числа), ppb (миллиардная доля числа).

    1‰ = 0,1 %, 1 ppm = 10 –4 %, 1 ppb = 10 –7 %.

    Концентрация показывает отношение массы или количества растворенного вещества к объему раствора или массе растворителя.

    Химический эквивалент

    Это условная частица, которая может присоединять или высвобождать один ион водорода в кислотно-основных реакциях или один электрон в окислительно-восстановительной реакции. Под частицей понимается молекула, ион, электрон и т. д. Фактор эквивалентности f показывает, какая доля реальной частицы вещества эквивалентна одному иону водорода в реакции или одному электрону в окислительно-восстановительной реакции. Рассмотрим реакцию:

    Фактор эквивалентности соляной кислоты f экв (HCl) = 1, f экв (Na2CO3) =12.

    Для окислительно-восстановительной реакции:

    Для реакций комплексообразования фактор эквивалентности определяют из числа координационных мест у комплексообразователя:

    Масса одного моль-эквивалента сложного вещества (Мэ), называемая молярной массой эквивалента, равна молярной массе вещества М, деленной на число реакционноспособных химических связей (n х.св):

    Число реакционноспособных химических связей n х.св в зависимости от класса соединения можно определить следующим образом:

    — для кислот — число протонов (n H +);

    — для оснований — число гидроксильных групп (n OH –);

    — для солей — произведение числа катионов на его заряд (nkt * Zkt).

    Эквивалентность реагирующих и образующихся веществ отражает закон эквивалентов.

    Титр раствора

    Титр раствора характеризует его концентрацию. Это масса вещества в 1 мл раствора

    Т = m в-ва / V р-р, г/мл.

    Например, титр раствора соляной кислоты Т(HCl) = 0,003648 г/мл показывает, что в 1 мл раствора кислоты содержится 0,003648 г HCl.

    Запись Т(HCl/NaOH) = 0,004000 г/мл означает, что 1 мл раствора кислоты реагирует с 0,004000 г NaOH.

    Титр (Т) раствора вещества связан с молярной концентрацией вещества в растворе:

    Таким образом, использование законов аналитической химии позволяет разрабатывать и идентифицировать состав пищевых продуктов, устанавливать механизм их воздействия на организм человека. Необходимость количественной и качественной оценки питания обусловлена его влиянием на здоровье и работоспособность человека. При количественной оценке суточного рациона определяется не его объем, а энергия, высвобождающаяся при метаболизме в организме основных пищевых веществ. Качественная характеристика рациона исходит из содержания в нем отдельных пищевых веществ (белков, жиров, углеводов, витаминов, минеральных веществ) и их соотношений. Только при количественной достаточности и благоприятных соотношениях пищевых веществ обеспечиваются наиболее полное проявление их биологических свойств и максимальное использование, а также оптимальное течение обменных процессов.

    Источник

    Оцените статью
    Разные способы