Способ группировки многочленов видеоурок

Способ группировки многочленов видеоурок

Письмо с инструкцией по восстановлению пароля
будет отправлено на вашу почту

  • Главная
  • 7-Класс
  • Алгебра
  • Видеоурок «Разложение многочлена на множители способом группировки»

В этом уроке познакомимся с самым интересным и творческим способом разложения многочленов на множители – способом группировки. В основе этого способа лежит умение раскладывать многочлен на множители путём вынесения общего множителя за скобку.

Давайте рассмотрим такой пример.

Разложить на множители многочлен

Если попытаться вынести какой-то общий множитель за скобку, то у нас ничего не получится, так как нет такого множителя для всех четырёх слагаемых. Но если присмотреться более внимательно, то можно заметить, что у первого и второго слагаемых есть общий для них множитель а, а для третьего и четвёртого слагаемых есть общий множитель b. Поэтому сначала мы сгруппируем первое слагаемое со вторым и третье с четвёртым. Вот что у нас получится:

На этапе объединения слагаемых в скобки важно помнить, что если мы поставим перед скобкой знак «+», то все слагаемые в скобках останутся со своими знаками. А если перед скобкой поставить знак «–», то знаки слагаемых в скобках надо поменять.

Вынесем за скобку первой группы множитель а, а за скобку второй группы множитель b. Тогда у нас получится выражение:

Теперь отчётливо видно, что в каждой группе образовался общий множитель (х + у), который можно вынести за скобку. Получим окончательный вариант:

В этом примере можно было объединить слагаемые в группы и по-другому: первое слагаемое с третьим (у них общий множитель х), а второе слагаемое с четвёртым (у них общий множитель у). Вот что у нас получилось бы:

(ах + bх) + (ау + bу) = х (а + b) + у (а + b) = (а + b) (х + у)

Результат, конечно же, тот же.

Давайте рассмотрим такой пример.

Разложить на множители многочлен 3х2 + 9х + ху + 3у. Давайте попробуем сгруппировать первое слагаемое с четвёртым и вынести за скобку множитель 3, а также второе слагаемое с третьим и вынести за скобку множитель х. Вот что у нас получится:

(3х2 + 3у) + (9х + ху) = 3(х2 + у) + х (9 + у)

И всё. Больше общих множителей нет, продолжить разложение мы не можем. Такую группировку надо признать неудачной. Попробуем собрать группы по-другому. Объединим первое слагаемое со вторым (у них общий множитель 3х) и третье с четвёртым (у них общий множитель у). Получим такое решение:

(3х2 + 9х) + (ху + 3у) = 3х(х + 3) + у(х + 3) = (х + 3)(3х + у)

Теперь у нас всё получилось.

Давайте подведём итоги.

1. Из вышерассмотренных примеров можно сделать вывод, что группировать слагаемые можно различными способами.

2. Группы могут содержать не только два, но и любое количество слагаемых. Да и число таких групп не ограничено. Главное, чтобы после вынесения множителя в каждой группе образовался ещё один общий для всех групп множитель для дальнейшего вынесения.

3. Однако надо быть готовым к тому, что группировка может оказаться и неудачной. Значит, надо искать другой способ.

4. А иногда не мешает проверить самого себя: выполните умножение многочленов и посмотрите, получился ли у вас многочлен, который был дан в начале. Если нет, то надо искать ошибку.

5. Как видите, способ группировки содержит в себе зерно творчества. По мере приобретения опыта Вы будете быстро находить удачную группировку.

Источник

Разложение многочлена на множители способом группировки

Урок 29. Алгебра 7 класс

В данный момент вы не можете посмотреть или раздать видеоурок ученикам

Чтобы получить доступ к этому и другим видеоурокам комплекта, вам нужно добавить его в личный кабинет, приобрев в каталоге.

Читайте также:  Конкурентным способам закупок не относится

Получите невероятные возможности

Конспект урока «Разложение многочлена на множители способом группировки»

· повторить, что называют разложением многочлена на множители;

· показать еще один способ разложения многочлена на множители – способ группировки.

Ранее мы с вами говорили, что:

На предыдущих уроках мы с вами познакомились с одним из способов разложения многочлена на множители, а именно с вынесением общего множителя за скобки.

На этом уроке мы познакомимся с разложением многочлена на множители способом группировки.

Итак, рассмотрим многочлен

Обратите внимание, что первое и второе слагаемые имеют общий множитель а, а третье и четвёртое слагаемые имеют общий множитель b.

Тогда сгруппируем первое и второе, третье и четвёртое слагаемые. Имеем

Теперь вынесем за скобки общие множители в каждой группе. Получаем

Видим, что каждое слагаемое имеет общий множитель ц плюс д. Вынесем его за скобки и получим

Вот таким образом мы разложили данный многочлен на множители способом группировки.

Заметим, что слагаемые многочлена можно группировать по-разному. Так, например, в только что рассмотренном примере можно было сгруппировать первое и третье, второе и четвёртое слагаемые

Однако следует знать, что не каждая группировка слагаемых многочлена позволяет нам разложить его на множители.

Так, например, сгруппировав в рассматриваемом многочлене первое и четвёртое, второе и третье слагаемые, у нас не получится разложить его на множители. Можете убедиться в этом самостоятельно.

Рассмотрим следующий пример, где также разложим многочлен на множители способом группировки.

Рассмотренный способ разложения многочлена на множители бывает удобно использовать в вычислениях.

Источник

Способ группировки

Кроме вынесения общего множителя за скобки существует еще один способ разложения многочлена на множители — способ группировки.

Этот способ разложения на множители считается более сложным, поэтому перед его изучением, убедитесь, что вы уверенно выносите общий множитель за скобки.

Чтобы разложить многочлен на множители способом группировки, необходимо сделать следующее.

  1. Подчеркнуть повторяющиеся буквы и записать друг за другом одночлены с одинаковыми буквенными множителями.
  2. Вынести общий множитель за скобки у каждой группы одночленов.
  3. Вынести полученный общий многочлен за скобки.

Рассмотрим пример разложения многочлена на множители способом группировки.

    Подчеркнем повторяющиеся буквенные множители в одночленах.

Примеры способа группировки

Группировать одночлены можно по-разному. При правильной группировке должен появиться общий многочлен .

Рассмотрим пример. Требуется разложить многочлен на множители, используя способ группировки.

Первый способ

Обратим внимание, что в двух одночленах повторяется « y 2 » и « z 2 ». Подчеркнем повторяющиеся одночлены и запишем их друг за другом. Затем вынесем общий множитель у каждой группы одночленов.

48x z 2 + 32x y 2 − 15 z 2 − 10 y 2 = 48x z 2 − 15 z 2 + 32x y 2 − 10 y 2 = 3z 2 (16x − 5) + 2y 2 (16x − 5) =
= (16x − 5)(3z 2 + 2y 2 )

Второй способ

Запишем пример еще раз. Теперь обратим внимание, что в первых двух одночленах повторяется « x ». Подчеркнем повторяющиеся одночлены. Вынесем общий множитель у каждой группы одночленов.

48 x z 2 + 32 x y 2 − 15z 2 − 10y 2 = 16x(3z 2 + 2y 2 ) − 5(3z 2 + 2y 2 ) = (3z 2 + 2y 2 )(16x − 5)

В итоге получился такой же ответ, как и при первом способе.

Рассмотрим еще один пример разложения многочлена способом группировки.

    4q(p − 1) + p − 1 = 4q(p − 1) + (p − 1) = 4q(p − 1) + 1 · (p − 1) = (p − 1)(4q + 1)
    В этом примере следует отметить, что для вынесения общего многочлена мы добавили умножение на 1 к многочлену (p − 1) , что не изменяет результат умножения.
    Это помогает понять, что останется во второй скобке после вынесения общего многочлена.

Смена знаков в скобках

Иногда для вынесения общего многочлена требуется сменить все знаки одночленов в скобках на противоположные.

Для этого за скобки выносится знак « − », а в скобках у всех одночленов меняются знаки на противоположные.

2ab 2 − 3x + 1 = −( − 2ab 2 + 3x − 1)

Рассмотрим пример способа группировки, где для вынесения общего многочлена, нам потрубуется выполнить смену знаков в скобках.

  • 2m(m − n) + n − m = − 2m( − m + n) + (n − m) = −2m(n − m) + 1 · (n − m) =
    = (n − m)(−2m + 1)
Читайте также:  Способы балансовой увязки показателей

Источник

Видеоурок «Разложение многочлена на множители способом вынесения общего множителя за скобки»

§ 1 Разложение многочлена на множители способом группировки

В этом уроке познакомимся с самым интересным и творческим способом разложения многочленов на множители – способом группировки. В основе этого способа лежит умение раскладывать многочлен на множители путём вынесения общего множителя за скобку.

Давайте рассмотрим такой пример.

Разложить на множители многочлен

Если попытаться вынести какой-то общий множитель за скобку, то у нас ничего не получится, так как нет такого множителя для всех четырёх слагаемых. Но если присмотреться более внимательно, то можно заметить, что у первого и второго слагаемых есть общий для них множитель а, а для третьего и четвёртого слагаемых есть общий множитель b. Поэтому сначала мы сгруппируем первое слагаемое со вторым и третье с четвёртым. Вот что у нас получится:

На этапе объединения слагаемых в скобки важно помнить, что если мы поставим перед скобкой знак «+», то все слагаемые в скобках останутся со своими знаками. А если перед скобкой поставить знак «–», то знаки слагаемых в скобках надо поменять.

Вынесем за скобку первой группы множитель а, а за скобку второй группы множитель b. Тогда у нас получится выражение:

Теперь отчётливо видно, что в каждой группе образовался общий множитель (х + у), который можно вынести за скобку. Получим окончательный вариант:

В этом примере можно было объединить слагаемые в группы и по-другому: первое слагаемое с третьим (у них общий множитель х), а второе слагаемое с четвёртым (у них общий множитель у). Вот что у нас получилось бы:

(ах + bх) + (ау + bу) = х (а + b) + у (а + b) = (а + b) (х + у)

Результат, конечно же, тот же.

§ 2 Пример разложения многочлена на множители способом группировки

Давайте рассмотрим такой пример.

Разложить на множители многочлен 3х2 + 9х + ху + 3у. Давайте попробуем сгруппировать первое слагаемое с четвёртым и вынести за скобку множитель 3, а также второе слагаемое с третьим и вынести за скобку множитель х. Вот что у нас получится:

(3х2 + 3у) + (9х + ху) = 3(х2 + у) + х (9 + у)

И всё. Больше общих множителей нет, продолжить разложение мы не можем. Такую группировку надо признать неудачной. Попробуем собрать группы по-другому. Объединим первое слагаемое со вторым (у них общий множитель 3х) и третье с четвёртым (у них общий множитель у). Получим такое решение:

(3х2 + 9х) + (ху + 3у) = 3х(х + 3) + у(х + 3) = (х + 3)(3х + у)

Теперь у нас всё получилось.

§ 3 Краткие итоги по теме урока

Давайте подведём итоги.

1. Из вышерассмотренных примеров можно сделать вывод, что группировать слагаемые можно различными способами.

2. Группы могут содержать не только два, но и любое количество слагаемых. Да и число таких групп не ограничено. Главное, чтобы после вынесения множителя в каждой группе образовался ещё один общий для всех групп множитель для дальнейшего вынесения.

3. Однако надо быть готовым к тому, что группировка может оказаться и неудачной. Значит, надо искать другой способ.

4. А иногда не мешает проверить самого себя: выполните умножение многочленов и посмотрите, получился ли у вас многочлен, который был дан в начале. Если нет, то надо искать ошибку.

5. Как видите, способ группировки содержит в себе зерно творчества. По мере приобретения опыта Вы будете быстро находить удачную группировку.

Источник

Разложение многочлена способом группировки

О чем эта статья:

Основные понятия

Мы знаем, что слово «множитель» происходит от слова «умножать».

Возьмем, например, число 12. Чтобы разложить его на множители, нужно написать его по-другому, а именно в виде «произведения» множителей.

Число 12 можно получить, если умножить 2 на 6. А 6 можно представить, как произведение 2 и 3. Вот так:

Так выглядит пошаговое разложение на множители. Числа, которые подчеркнуты на картинке — это множители, которые дальше разложить уже нельзя.

Читайте также:  Способы определения координат целей

Разложение многочлена на множители — это преобразование многочлена в произведение, которое равно данному многочлену.

5 способов разложения многочлена на множители

  1. Вынесение общего множителя за скобки.
  2. Формулы сокращенного умножения.
  3. Метод группировки.
  4. Выделение полного квадрата.
  5. Разложение квадратного трехчлена на множители.

Способ группировки множителей

Разложение на множители методом группировки возможно, когда многочлены не имеют общего множителя для всех членов многочлена.

Этот способ применяется в тех случаях, когда многочлен удается представить в виде пар слагаемых таким образом, чтобы из каждой пары можно было выделить один и тот же множитель. Этот общий множитель можно вынести за скобку. И тогда исходный многочлен будет представлен в виде произведения, что значительно облегчает задачу.

Разложить на множители методом группировки можно в три этапа:

  1. Объединить слагаемые многочлена в группы, которые содержат общий множитель. Для наглядности их можно подчеркнуть.
  2. Вынести общий множитель за скобки.
  3. Полученные произведения имеют общий множитель в виде многочлена, который нужно вынести за скобки.

Объединить члены многочлена в группы можно по-разному. И ее всегда группировка может быть удачной для последующего разложения на множители. В таком случае нужно продолжить эксперимент и попробовать объединить в группы другие члены многочлена.

Чтобы понять эти сложные выражения, применим правило группировки множителей при решении примеров. Рассмотрим два способа.

Пример 1. Разложить на множители методом группировки: up — bp + ud — bd.

up — bp + ud — bd = (up — bp) + (ud — bd)

Заметим, что в первой группе повторяется p, а во второй — d.

Вынесем в первой группе общий множитель p, а во второй общий множитель d.

Получим: p(u — b) + d(u — b).

Заметим, что общий множитель (u — b).

Вынесем его за скобки:

Группировка множителей выполнена.

up — bp + ud — bd = (up + ud) — (bp + bd)

Заметим, что в первой группе повторяется u, а во второй — b.

Вынесем в первой группе общий множитель u, а во второй общий множитель b.

Получим: u(p + d) — b(p + d).

Заметим, что общий множитель (p + d).

Вынесем его за скобки:

Группировка множителей выполнена.

От перестановки мест слагаемых сумма не меняется, поэтому оба ответа верны:

(u — b)(p + d) = (p + d)(u — b).

Вот так работает алгоритм разложения многочлена на множители способом группировки. Продолжим практиковаться на примерах.

Пример 2. Разложить на множители выражение: c(m — n) + d(m — n).

  1. Найдем общий множитель: (m — n)
  2. Вынесем общий множитель за скобки: (m — n)(c + d).

Ответ: c(m — n) + d(m — n) = (m — n)(c + d).

Пример 3. Разложить на множители с помощью группировки: 5x — 12z (x — y) — 5y.

5x — 12z (x — y) — 5y = 5x — 5y — 12z (x — y) = 5(x — y) — 12z (x — y) = (x — y) (5 — 12z)

Ответ: 5x — 12z (x — y) — 5y = (x — y) (5 — 12z).

Иногда для вынесения общего многочлена нужно заменить все знаки одночленов в скобках на противоположные. Для этого за скобки выносится знак минус, а в скобках у всех одночленов меняем знаки на противоположные.

Проверим как это на следующем примере.

Пример 4. Произвести разложение многочлена на множители способом группировки: ax 2 — bx 2 + bx — ax + a — b.

  1. Сгруппируем слагаемые по два и вынесем в каждой паре общий множитель за скобку:

ax 2 — bx 2 + bx — ax + a — b = (ax 2 — bx 2 ) + (bx — ax) + (a — b) = x 2 (a — b) — x(a — b) + (a — b)

Получили три слагаемых, в каждом из которых есть общий множитель (a — b).

  1. Теперь вынесем за скобку (a — b), используя распределительный закон умножения:

x 2 (a — b) + x(b — a) + (a — b) = (a — b)(x 2 + x + 1)

Ответ: ax 2 — bx 2 + bx — ax + a — b = (a — b)(x 2 + x + 1)

Источник

Оцените статью
Разные способы