Способ формирования выборки при котором генеральная совокупность

Способ формирования выборки при котором генеральная совокупность

Раздел 2. Выборочная и генеральная совокупность

Генеральная и выборочная совокупности.

Генеральная (включает все единицы наблюдения, которые могут быть к ней отнесены в соответствии с целью исследования.) Генеральная совокупность может рассматриваться не только в пределах конкретных производств или территориальных границ, но также и ограничиваться другими признаками (пол, возраст) и их сочетанием.

Таким образом, в зависимости от цели исследования и его задач изменяются границы генеральной совокупности, для этого используют основные признаки, ее ограничивающие.

Выборочная (часть генеральной совокупности, которая должна быть репрезентативной по отношению к генеральной и наиболее полно отражать ее свойства). На основе анализа выборочной совокупности можно получить достаточно полное представление о закономерностях, присущих всей генеральной совокупности.

Выборочная совокупность должна быть репрезентативной, т. е. в отобранной части должны быть представлены все элементы и в таком же соотношении, как в генеральной совокупности. Иными словами, выборочная совокупность должна отражать свойства генеральной совокупности, т. е. правильно ее представлять. Репрезентативность должна быть количественной и качественной.

Количественная — основана на законе больших чисел и означает достаточную численность элементов выборочной совокупности, расчитываемую по специальным формулам и таблицам.

Качественная — основана на законе вероятности и означает соотвестиве (однотипность) призщнаков, характеризующих элементы выборочной совокупности по отношению к генеральной.

Методы формирования выборки:

-случайная выборка — отбор единиц наблюдния наугад.

-Механическая выборка — арифметический подход к отбору едниц наблдения типологическая выборка — при формировании генеральная совокупность предварительно делится на типы с послед. отбором единиц наблюдения из каждой типичесской группы. При этом число единиц можно отобрать пропорционально численности типической группы и непропорционально— Серийная выборка (гнездовой выбор) — формируется с помощью отбора не отдельных единиц наблюдения, а целых групп, серий, или гнезд, в состав которых входят организованные отдельным образом единицы наблюдения

Метод многоступенчатого отбора — по количеству этапов различают отдноступенчатый, двуступенчатый, терхступенчатый и т.д. метод направленного выбора— позволяет выявить влияние неизвестных факторов при устанавлении влияния известных

Алгоритмы параметрических критериев.

Параметрические критерии применяются для выборок с нормальным законом распределения. Формула расчета этих критериев содержат параметры выборки: среднее, дисперсии и др. Поэтому они называются параметрическими. Нормальность закона распределения должна быть статистически доказана с помощью одного из критериев согласия: критерий Пирсона, F-критерия Фишера, -критерия Колмогорова и др.

В ряде случаев параметрические критерии мощнее непараметрических критериев. У последних выше вероятность возникновения ошибки второго рода – принятия ложной нулевой гипотезы.

К параметрическим методам относятся следующие:

– Методы однофакторного анализа

– Методы двухфакторного анализа

Назначение.
Критерий позволяет оценивать различия средних значений выборок, имеющих нормальное распределение.

Критерий применим для сравнения средних значений двух выборок полученных до и после воздействия некоторого фактора.

Данный критерий был разработан Уильямом Госсеттом для оценки качества пива в компании Гиннесс. В связи с обязательствами перед компанией по неразглашению коммерческой тайны (а руководство Гиннесса считало таковой использование статистического аппарата в своей работе), статья Госсетта вышла в журнале «Биометрика» под псевдонимом «Student» (Студент).

Зависимые(связанные) и независимые (несвязанные) выборки

При сравнении двух (и более) выборок важным параметром является их зависимость. Если можно установить гомоморфную пару (то есть, когда одному случаю из выборки X соответствует один и только один случай из выборки Y и наоборот) для каждого случая в двух выборках (и это основание взаимосвязи является важным для измеряемого на выборках признака), такие выборки называются зависимыми. Примеры зависимых выборок:

  • пары близнецов,
  • два измерения какого-либо признака до и после экспериментального воздействия,
  • мужья и жёны
  • и т. п.

В случае, если такая взаимосвязь между выборками отсутствует, то эти выборки считаются независимыми, например:

Соответственно, зависимые выборки всегда имеют одинаковый объём, а объём независимых может отличаться.

Двухвыборочный t-критерий для независимых выборок

Для двух несвязанных выборок(наблюдения не относятся к одной и той же группе объектов ) возможны два варианта расчета:

Читайте также:  Способ хранения данных бд бывают

    • когда дисперсии известны
    • когда дисперсии неизвестны, но равны друг другу.
  1. Предварительно проверяется нормальность закона распределения по одному из критериев согласия.
  2. Рассчитывается средне арифметические значения и для каждой выборки по формуле где – значение i-го результата наблюдения.
  3. Рассчитывается — эмпирическое значение критерия Стьюдента:

Где

квадратичного отклонения. Здесь и – оценки дисперсий.

Рассмотрим сначала равночисленные выборки. В этом случае

В случае наравночисленных выборок , выражение

В обоих случаев подсчет числа степеней свободы осуществляется по формулам

Понятно, что при численном равенстве выборок

Эмпирическое значение критерия Стьюдента сравнивается с критическим значением (по таблице 1 приложения) для данного числа степеней свободы.

Нулевая гипотеза при заданном уровне значимости принимается, если эмпирическое значение .

Пример рассчитаем на лабораторной работе.

Психолог измерял время сложной сенсомоторной реакции выбора (в мс) в контрольной и экспериментальных группах. В экспериментальную группу (Х) входило 9 спортсменов высокой квалификации. Контрольной группой (Y) являлись 8 человек, активно не занимающиеся спортом. Психолог приверяет гипотезу о том , что средняя скорость сложной сенсомоторной реакции выбора у спортсменов выше, чем та же величина у людей, не занимающихся спортом.

Источник

Генеральная совокупность и выборка

Генеральная совокупность [1] (в англ. — population) — совокупность всех объектов (единиц), относительно которых учёный намерен делать выводы при изучении конкретной проблемы.

Генеральная совокупность состоит из всех объектов, которые подлежат изучению. Состав генеральной совокупности зависит от целей исследования. Иногда генеральная совокупность — это все население определённого региона (например, когда изучается отношение потенциальных избирателей к кандидату), чаще всего задаётся несколько критериев, определяющих объект исследования. Например, мужчины 30-50 лет, использующие бритву определённой марки не реже раза в неделю, и имеющие доход не ниже $100 на одного члена семьи.

Выборка или выборочная совокупность — множество случаев (испытуемых, объектов, событий, образцов), с помощью определённой процедуры выбранных из генеральной совокупности для участия в исследовании.

Характеристики выборки:

· Качественная характеристика выборки – кого именно мы выбираем и какие способы построения выборки мы для этого используем.

· Количественная характеристика выборки – сколько случаев выбираем, другими словами объём выборки.

Необходимость выборки

· Объект исследования очень обширный. Например, потребители продукции глобальной компании – огромное количество территориально разбросанных рынков.

· Существует необходимость в сборе первичной информации.

Объём выборки

Объём выборки — число случаев, включённых в выборочную совокупность. Из статистических соображений рекомендуется, чтобы число случаев составляло не менее 30 – 35.

Зависимые и независимые выборки

При сравнении двух (и более) выборок важным параметром является их зависимость. Если можно установить гомоморфную пару (то есть, когда одному случаю из выборки X соответствует один и только один случай из выборки Y и наоборот) для каждого случая в двух выборках (и это основание взаимосвязи является важным для измеряемого на выборках признака), такие выборки называются зависимыми. Примеры зависимых выборок:

· два измерения какого-либо признака до и после экспериментального воздействия,

В случае, если такая взаимосвязь между выборками отсутствует, то эти выборки считаются независимыми, например:

· мужчины и женщины,

· психологи и математики.

Соответственно, зависимые выборки всегда имеют одинаковый объём, а объём независимых может отличаться.

Сравнение выборок производится с помощью различных статистических критериев:

Репрезентативность

Выборка может рассматриваться в качестве репрезентативной или нерепрезентативной.

Пример нерепрезентативной выборки

В США одним из наиболее известных исторических примеров нерепрезентативной выборки считается случай, происшедший во время президентских выборов в 1936 году [1] . Журнал «Литрери Дайджест», успешно прогнозировавший события нескольких предшествующих выборов, ошибся в своих предсказаниях, разослав десять миллионов пробных бюллетеней своим подписчикам, а также людям, выбранным по телефонным книгам всей страны и людям из регистрационных списков автомобилей. В 25 % вернувшихся бюллетеней (почти 2,5 миллиона) голоса были распределены следующим образом:

· 57 % отдавали предпочтение кандидату-республиканцу Альфу Лэндону

· 40 % выбрали действующего в то время президента-демократа Франклина Рузвельта

На действительных же выборах, как известно, победил Рузвельт, набрав более 60 % голосов. Ошибка «Литрери Дайджест» заключалась в следующем: желая увеличить репрезентативность выборки, — так как им было известно, что большинство их подписчиков считают себя республиканцами, — они расширили выборку за счёт людей, выбранных из телефонных книг и регистрационных списков. Однако они не учли современных им реалий и в действительности набрали ещё больше республиканцев: во время Великой депрессии обладать телефонами и автомобилями могли себе позволить в основном представители среднего и высшего класса (то есть большинство республиканцев, а не демократов).

Читайте также:  Бактерии брожения по способу питания это сапрофиты

Виды плана построения групп из выборок

Выделяют несколько основных видов плана построения групп [2] :

1. Исследование с экспериментальной и контрольной группами, которые ставятся в разные условия.

2. Исследование с экспериментальной и контрольной группами с привлечением стратегии попарного отбора

3. Исследование с использованием только одной группы — экспериментальной.

4. Исследование с использованием смешанного (факторного) плана — все группы ставятся в разные условия.

Типы выборки

Выборки делятся на два типа:

Вероятностные выборки

1. Простая вероятностная выборка:

o Простая повторная выборка. Использование такой выборки основывается на предположении, что каждый респондент с равной долей вероятности может попасть в выборку. На основе списка генеральной совокупности составляются карточки с номерами респондентов. Они помещаются в колоду, перемешиваются и из них наугад вынимается карточка, записывается номер, потом возвращается обратно. Далее процедура повторяется столько раз, какой объём выборки нам необходим. Минус: повторение единиц отбора.

Процедура построения простой случайной выборки включает в себя следующие шаги:

1. необходимо получить полный список членов генеральной совокупности и пронумеровать этот список. Такой список, напомним, называется основой выборки;

2. определить предполагаемый объем выборки, то есть ожидаемое число опрошенных;

3. извлечь из таблицы случайных чисел столько чисел, сколько нам требуется выборочных единиц. Если в выборке должно оказаться 100 человек, из таблицы берут 100 случайных чисел. Эти случайные числа могут генерироваться компьютерной программой.

4. выбрать из списка-основы те наблюдения, номера которых соответствуют выписанным случайным числам

· Простая случайная выборка имеет очевидные преимущества. Этот метод крайне прост для понимания. Результаты исследования можно распространять на изучаемую совокупность. Большинство подходов к получению статистических выводов предусматривают сбор информации с помощью простой случайной выборки. Однако метод простой случайной выборки имеет как минимум четыре существенных ограничения:

1. зачастую сложно создать основу выборочногo наблюдения, которая позволила бы провести простую случайную выборку.

2. результатом применения простой случайной выборки может стать большая совокупность, либо совокупность, распределенная по большой географической территории, что значительно увеличивает время и стоимость сбора данных.

3. результаты применения простой случайной выборки часто характеризуются низкой точностью и большей стандартной ошибкой, чем результаты применения других вероятностных методов.

4. в результате применения SRS может сформироваться нерепрезентативная выборка. Хотя выборки, полученные простым случайным отбором, в среднем адекватно представляют генеральную совокупность, некоторые из них крайне некорректно представляют изучаемую совокупность. Вероятность этого особенно велика при небольшом объеме выборки.

· Простая бесповторная выборка. Процедура построения выборки такая же, только карточки с номерами респондентов не возвращаются обратно в колоду.

1. Систематическая вероятностная выборка. Является упрощенным вариантом простой вероятностной выборки. На основе списка генеральной совокупности через определённый интервал (К) отбираются респонденты. Величина К определяется случайно. Наиболее достоверный результат достигается при однородной генеральной совокупности, иначе возможны совпадение величины шага и каких-то внутренних циклических закономерностей выборки (смешение выборки). Минусы: такие же как и в простой вероятностной выборке.

2. Серийная (гнездовая) выборка. Единицы отбора представляют собой статистические серии (семья, школа, бригада и т. п.). Отобранные элементы подвергаются сплошному обследованию. Отбор статистических единиц может быть организован по типу случайной или систематической выборки. Минус: Возможность большей однородности, чем в генеральной совокупности.

3. Районированная выборка. В случае неоднородной генеральной совокупности, прежде, чем использовать вероятностную выборку с любой техникой отбора, рекомендуется разделить генеральную совокупность на однородные части, такая выборка называется районированной. Группами районирования могут выступать как естественные образования (например, районы города), так и любой признак, заложенный в основу исследования. Признак, на основе которого осуществляется разделение, называется признаком расслоения и районирования.

4. «Удобная» выборка. Процедура «удобной» выборки состоит в установлении контактов с «удобными» единицами выборки — с группой студентов, спортивной командой, с друзьями и соседями. Если необходимо получить информацию о реакции людей на новую концепцию, такая выборка вполне обоснована. «Удобную» выборку часто используют для предварительного тестирования анкет.

Читайте также:  Дезодорирование растительного масла описание способа

Невероятностные выборки

Отбор в такой выборке осуществляется не по принципам случайности, а по субъективным критериям – доступности, типичности, равного представительства и т.д.

1. Квотная выборка – выборка строится как модель, которая воспроизводит структуру генеральной совокупности в виде квот (пропорций) изучаемых признаков. Число элементов выборки с различным сочетанием изучаемых признаков определяется с таким расчётом, чтобы оно соответствовало их доле (пропорции) в генеральной совокупности. Так, например, если генеральная совокупность у нас представлена 5000 человек, из них 2000 женщин и 3000 мужчин, тогда в квотной выборке у нас будут 20 женщин и 30 мужчин, либо 200 женщин и 300 мужчин. Квотированные выборки чаще всего основываются на демографических критериях: пол, возраст, регион, доход, образование и прочих. Минусы: обычно такие выборки нерепрезентативны, т.к. нельзя учесть сразу несколько социальных параметров. Плюсы: легкодоступный материал.

2. Метод снежного кома. Выборка строится следующим образом. У каждого респондента, начиная с первого, просятся контакты его друзей, коллег, знакомых, которые подходили бы под условия отбора и могли бы принять участие в исследовании. Таким образом, за исключением первого шага, выборка формируется с участием самих объектов исследования. Метод часто применяется, когда необходимо найти и опросить труднодоступные группы респондентов (например, респондентов, имеющих высокий доход, респондентов, принадлежащих к одной профессиональной группе, респондентов, имеющих какие-либо схожие хобби/увлечения и т.д.)

3. Стихийная выборка – выборка так называемого «первого встречного». Часто используется в теле- и радиоопросах. Размер и состав стихийных выборок заранее не известен, и определяется только одним параметром – активностью респондентов. Минусы: невозможно установить какую генеральную совокупность представляют опрошенные, и как следствие – невозможность определить репрезентативность.

4. Маршрутный опрос – часто используется, если единицей изучения является семья. На карте населённого пункта, в котором будет производиться опрос, нумеруются все улицы. С помощью таблицы (генератора) случайных чисел отбираются большие числа. Каждое большое число рассматривается как состоящее из 3-х компонентов: номер улицы (2-3 первых числа), номер дома, номер квартиры. Например, число 14832: 14 – это номер улицы на карте, 8 – номер дома, 32 – номер квартиры.

5. Районированная выборка с отбором типичных объектов. Если после районирования из каждой группы отбирается типичный объект, т.е. объект, который по большинству изучаемых в исследовании характеристик приближается к средним показателям, такая выборка называется районированной с отбором типичных объектов.

Стратегии построения групп

Отбор групп для их участия в психологическом эксперименте осуществляется с помощью различных стратегий, которые нужны для того, чтобы обеспечить максимально возможное соблюдение внутренней и внешней валидности [3] .

· Рандомизация (случайный отбор)

· Привлечение реальных групп

Рандомизация , или случайный отбор, используется для создания простых случайных выборок. Использование такой выборки основывается на предположении, что каждый член популяции с равной вероятностью может попасть в выборку. Например, чтобы сделать случайную выборку из 100 студентов вуза, можно сложить бумажки с именами всех студентов вуза в шляпу, а затем достать из неё 100 бумажек — это будет случайным отбором (Гудвин Дж., с. 147).

Попарный отбор — стратегия построения групп выборки, при котором группы испытуемых составляются из субъектов, эквивалентных по значимым для эксперимента побочным параметрам. Данная стратегия эффективна для экспериментов с использованием экспериментальных и контрольных групп с лучшим вариантом — привлечением близнецовых пар (моно- и дизиготных), так как позволяет создать.

Стратометрический отбор — рандомизация с выделением страт (или кластеров). При данном способе формирования выборки генеральная совокупность делится на группы (страты), обладающие определёнными характеристиками (пол, возраст, политические предпочтения, образование, уровень доходов и др.), и отбираются испытуемые с соответствующими характеристиками.

Приближённое моделирование — составление ограниченных выборок и обобщение выводов об этой выборке на более широкую популяцию. Например, при участии в исследовании студентов 2-го курса университета, данные этого исследования распространяются на «людей в возрасте от 17 до 21 года». Допустимость подобных обобщений крайне ограничена.

Приближенное моделирование – формирование модели, которая для четко оговоренного класса систем (процессов) описывает его поведение (или нужные явления) с приемлемой точностью.

Источник

Оцените статью
Разные способы