Магний: способы получения и химические свойства
Магний Mg — это щелочной металл. Серебристо-белый, относительно мягкий, пластичный, ковкий металл. На воздухе покрыт оксидной пленкой. Сильный восстановитель.
Относительная молекулярная масса Mr = 24,305; относительная плотность для твердого и жидкого состояния d = 1,737; tпл = 648º C; tкип = 1095º C.
Способ получения
1. В результате электролиза расплава хлорида магния образуются магний и хлор :
2. Нитрид магния разлагается при 700 — 1500º С образуя магний и азот:
3. Оксид магния легко восстанавливается углеродом при температуре выше 2000º С, образуя магний и угарный газ:
MgO + C = Mg + CO
4. Оксид магния также легко восстанавливается кальцием при 1300º С с образованием магния и оксида кальция:
MgO + Ca = CaO + Mg
Качественная реакция
Качественной реакцией для магния является взаимодействие соли магния с любой сильной щелочью, в результате которой происходит выпадение студенистого осадка:
1. Хлорид магния взаимодействует с гидроксидом калия и образует гидроксид магния и хлорид калия:
MgCl2 + 2KOH = Mg(OH)2 + 2KCI
Химические свойства
1. Магний — сильный восстановитель . Поэтому он реагирует почти со всеми неметаллами :
1.1. Магний взаимодействует с азотом при 780 — 800º С образуя нитрид магния:
1.2. Магний сгорает в кислороде (воздухе) при 600 — 650º С с образованием оксида магния:
2Mg + O2 = 2MgO
1.3. Магний активно реагирует при комнатной температуре с влажным хлором . При этом образуется хлорид магния :
1.4. С водородом магний реагирует при температуре 175º C, избыточном давлении и в присутствии катализатора MgI2 с образованием гидрида магния:
2. Магний активно взаимодействует со сложными веществами:
2.1. Магний реагирует с горячей водой . Взаимодействие магния с водой приводит к образованию гидроксида магния и газа водорода:
2.2. Магний взаимодействует с кислотами:
2.2.1. Магний реагирует с разбавленной соляной кислотой, при этом образуются хлорид магния и водород :
Mg + 2HCl = MgCl2 + H2 ↑
2.2.2. Реагируя с разбавленной азотной кислотой магний образует нитрат магния, оксид азота (I) и воду:
2.2.3. В результате реакции сероводородной кислоты и магния при 500º С образуется сульфид магния и водород:
Mg + H2S = MgS + H2
2.3. Магний вступает в реакцию с газом аммиаком при 600 — 850º С. В результате данной реакции образуется нитрид магния и водород:
2.4. Магний может вступать в реакцию с оксидами :
2.4.1. В результате взаимодействия магния и оксида азота (IV) при температуре 150º С в вакууме, в этилацетилене образуется нитрат магния и оксид азота (II):
2.4.2. Магний взаимодействует с оксидом кремния при температуре ниже 800º С в атмосфере водорода образуя силицид магния и оксид магния:
4Mg + SiO2 = Mg2Si + MgO,
а если температуру поднять до 1000º С, то в результате реакции образуется кремний и оксид магния:
2Mg + SiO2 = Si + 2MgO
Источник
Производство магния
В современном машиностроении магний находит широкое применение главным образом как основа легких сплавов. Для получения металлического магния применяют два способа — электролитический и термический. В качестве исходных материалов используют магнезит, доломит, карналлит и бишофит. Магнезит является карбонатом магния (MgCO3), содержащий 28,8% Mg. В природном магнезите, кроме MgCO3, обычно содержатся окислы кремния, железа, алюминия и кальция. В нашей стране имеются большие залежи магнезита на Урале (Саткинское и Халиловское месторождения).
Доломит представляет собой двойной карбонат магния и кальция (MgCO3*CaCO3), содержащий 13,2% Mg. Доломит содержит примеси в виде кварца, кальцита, гипса и др. Наиболее крупные промышленные месторождения доломита находятся в Московской области, на Урале и на Украине.
Карналлит является природным хлоридом магния и калия (MgCl2*KCl*6Н2O), в зависимости от содержания тех или иных примесей имеет розовый, желтый или серый цвет. Карналлит является гигроскопическим материалом, активно поглощающим влагу. В карналлите содержится 8,8% Mg. Крупнейшие залежи карналлита находятся на Урале (Соликамское месторождение).
Бишофит представляет собой хлорид магния (MgCl2*6Н2О), в природе содержится в морской воде, около 0,3% в воде соляных озер. В некоторых озерах нашей страны, например озера Перекопской группы, к концу лета содержание MgCl2 достигает 15%. Бишофит также получают при переработке природного карналлита.
Электролитическим способом получают магний из хлоридов магния.
Для этой цели магнезит или доломит подвергают обжигу при температурах 700—800° С. Во время обжига магнезит диссоциирует
Хлорирование окиси магния осуществляют в шахтных электрических печах, футерованных шамотным кирпичом. Во время хлорирования в печь, кроме окиси магния, загружают угольные цилиндрики, а через фурмы, расположенные внизу печи, подают хлор. Электроды в печи располагают друг к другу под углом 120°. При работе печи развивается максимальная температура до 1000° C. В печи образовавшийся хлористый магний расплавляется и периодически, через 3—4 часа, выпускается в ковш с плотно закрывающейся крышкой и в последнем транспортируется в цех электролиза.
Карналлит подвергают обезвоживанию и расплавлению. Обезвоживание обычно производят в трубчатых вращающихся печах при температуре газов на входе до 450° С и на выходе до 220° С. Плавление ведут в трехфазных электропечах при температуре 750—800° С. Во время выдержки из расплава оседает на дно печи MgO, а в расплаве остается до 50% MgCl2, 0,5—0,7% MgO, остальное KCl и NaCl. Полученный расплав направляют на электролиз. Бишофит также подвергают обезвоживанию и расплавлению.
Получение магния из хлоридов магния ведут в электролизных ваннах. Схема электролизера приведена на рис. 22. В ван не анодами являются графитовые электроды, катодами — стальные пластины. Электролитом служит расплав солей MgCl2, KCl, NaCl, CaCl2. Во время электролиза электрический ток, проходя через электролит, нагревает его до температуры 700—750° С. При этих температурах MgCl2 разлагается и в катодном пространстве выделяется магний, а в анодном хлор. Плотность электролита больше плотности магния, поэтому магний всплывает на поверхность ванны. Отсюда магний при помощи вакуума перекачивается в ковш. Выделяющийся хлор отсасывают через хлоропровод. В процессе электролиза образующаяся окись магния и восстановленное железо осаждаются на дно ванны. Их периодически удаляют.
При электролизе расходуется 20—25 кг электродов и 15000—17000 квт*ч электроэнергии на 1 т магния.
Полученный процессом электролиза магний обычно содержит примеси: Fe, Na, К, CaCl2, MgCl2, NaCl, KCl, MgO. Примеси отрицательно влияют на механические свойства и коррозионную стойкость магния. Поэтому электролитический магний рафинируют.
Рафинирование магния производят или переплавкой с флюсами или возгонкой магния.
Рафинирование магния переплавкой с флюсами производят в электропечах сопротивления или при пламенном обогреве со стационарным или выемным тиглем. Печь футеруют шамотным кирпичом, а тигли изготовляют из чугуна или стали. В качестве флюса используют хлористые и фтористые соли (MgCl2; KCl; BaCl; NaCl; CaCl; CaF). После расплавления и нагрева металла до 700— 750° С его перемешивают с флюсом. Затем металл охлаждают до 690—710° С и из-под слоя шлака разливают в чушки. Этот способ рафинирования дает возможность очищать магний только от неметаллических примесей. После рафинирования получают металл с содержанием 99,85—99,9% Mg.
Рафинирование магния возгонкой основано на значительной упругости паров его. Упругость паров примесей, к которым относятся железо, кремний, медь и алюминий, меньше упругости паров магния.
Рафинирование возгонкой ведут в герметически закрытых ретортах со ступенчатым вакуумом (рис. 23). При температуре 600° С и остаточном давлении 0,1—0,2 мм рт. ст. магний испаряется. В зоне конденсации при температуре 450—500° С магний оседает на стенках реторты в виде друз — чистых блестящих кристаллов.
Друзы магния отделяются, затем переплавляются, после чего магний разливается на чушки. Металл содержит 99,99% Mg.
Электролитический способ получения магния является трудоемким и вредным производством. Поэтому в последние годы находят применение термические способы получения магния. Термические способы подразделяются на силикотермический, карбидно-термический и углетермический. В основу этих способов положены процессы восстановления магния из обожженного магнезита или доломита. При силикотермическом способе восстановителем служит кремний. Восстановление магния происходит по следующей реакции:
В качестве исходного материала используют доломит, ферросилиций или сплавы кремния с алюминием. Восстановление ведут в ретортах из нержавеющей стали под вакуумом до 0,1 ат, соединенных с кристаллизаторами. Реторты нагревают в электропечах или пламенем за счет сжигания топлива. При нагреве материала до 1100—1200° С в вакууме магний восстанавливается, испаряется и конденсируется (кристаллизуется) на стенках в кристаллизаторах. В реторту загружают 3,5—4,0 г шихты и получают 500—600 кг магния. На восстановление магния из 5 г доломита расходуют 1 г 75%-ного ферросилиция.
При карбидно-термическом способе в качестве исходных материалов используют магнезит и карбид кальция. В процессе нагрева такой смеси в ретортах под вакуумом до 1100—1200°С протекает реакция
Магний, испаряясь в кристаллизаторе, конденсируется, окись углерода отводится, а окись кальция остается в реторте в виде твердой фазы.
Восстановление магния углетермическим способом ведут в специальных дуговых печах при температуре выше 2000° С. При этих температурах протекает реакция
Источник
Технология производствa магния.
Основной способ производства магния — электролитический. Электролитическое получение магния из водных растворов невозможно, так как электрохимический потенциал магния значительно более отрицательный, чем потенциал разряда ионов водорода на катоде. Поэтому электролиз магния ведут из его расплавленных солей.
Основная составляющая электролита — хлористый магний МgCl2, а для снижения температуры плавления электролита и повышения его электропровод-ности в него вводят NаСl, СаСl2, КСl и небольшие количества NaF и СаF2.
Основным сырьем для получения магния являются карналлит (МgСl2•КСl•6Н2О), магнезит (МgСО3), доломит (СаСО3•МgСО3), бишофит (МgСl2•6Н2О). Карналлит — это природный хлорид магния и калия MgCl2 • КСl • 6Н2O. Бишофит (MgCl2 • 6Н2O) получается при переработке карналлита или выпари-вается из воды соленых озер и морей. Наибольшее количество магния получают из карналлита.
Основные этапы производства магния:
1.Карналлит;
2. Обогащение карналлита;
3. Обезвоживание карналлита;
4. Электролитическое получение магния;
5. Рафинирование магния;
6. Магний.
Обогащение карналлита является первой стадией его переработки. Сущность процесса обогащения сводится к отделению КСl и нерастворимых примесей путем перевода в водный раствор МgСl2 и КСl. При охлаждении полученного раствора в вакуум-кристаллизаторах выпадают кристаллы искусственного карналлита МgСl2•КСl•6Н2О, которые отделяют фильтрованием.
Карналлит обезвоживают в две стадии. Первую стадию проводят в трубчатых печах или печах кипящего слоя при 550—600° С. Под действием теплоты нагретых газов карналлит обезвоживается и после такой обработки содержит 3—4% влаги.
Вторую стадию обезвоживания осуществляют либо плавкой полученного после первой стадии карналлита в электропечах с последующим отстаиванием окиси магния, либо хлорированием карналлита в расплавленном состоянии.
Этот способ производства хлорида магния заключается в хлорировании магнезита или оксида магния, получаемого путем предварительного обжига магнезита. Процесс ведут в шахтных электрических печах. В нижней части (рис. 1) расположены в два ряда электроды 2; между ними находятся угольные брикеты, которые при прохождении электрического тока нагреваются до
750 °С. Шихту загружают сверху, через фурмы 7 вдувают хлор.
У фурм происходит хлорирование оксида магния: MgO + Сl2 + С = MgCl2 + СО. Хлористый магний плавится и скапливается на подине, периодически его выпускают в ковш и транспортируют в электролизный цех.
Рисунок 1. Рисунок 2.
Шахтная печь для производства магния: . Схема магниевого диафрагменного
1 — летка; 2 — угольные электроды; электролизера.
3 — ремонтный люк;
4 — загрузочное устройство;
б — футеровка; 7 — хлорные фурмы;
8 — шихта; 9 — угольные брикеты
Электролитическое получение магния. Для этой цели применяют электролизер (рисунок 2), который изнутри футерован шамотным кирпичом. Анодами служат графитовые пластины 1, а катодами — стальные пластины 2, расположенные по обе стороны анода.
Для электролитического разложения хлористого магния через электролит пропускают ток под напряжением 2,7—2,8 В.
Электролитическое получение магния осуществляют в электролизере (рис. 2). Анодами служат графитовые пластины 1, а катодами — стальные пластины 2. Удельная плотность магния меньше удельной плотности электролита, и поэтому магний всплывает. Хлор, выделяемый на аноде, тоже всплывает. Чтобы избежать взаимодействия хлора с Mg, а также короткого замыкания анода и катода расплавленным магнием, вверху устанавливают специальную разделительную диафрагму 3.
Электролит состоит из МgСl2 (5—17 %), KCl, NaCl и добавок СаF2 и По мере расходования МgСl2 в электролизер периодически заливают жидкие карналлит либо хлористый магний. Электролиз ведут при 670—720 °С. На катоде выделяется магний: Мg2+ + 2е —>на аноде — газообразный хлор 2Cl- — 2е —> Cl2. Из электролизера откачивают хлор и 2—3 раза в сутки с помощью вакуум-ковшей с электрообогревом извлекают жидкий магний.
В процессе электролиза в электролите повышается концентрация других хлоридов за счет расходования МgСl2. Поэтому периодически часть отработанного электролита удаляют из ванны и вместо него заливают расплав МgСl2 или карналлита. В результате частичного разложения примесей на дне ванны образуется шлам, который регулярно удаляют из ванны.
Рафинирование магния. В электролизных ваннах получают черновой магний, который содержит 5% примесей: металлические примеси (Fе, Na, К, Аl, Са) и не металл примеси (МgСl2, КСl, NaCl, СаСl2, МgО). Магний очищают (рафинируют) переплавкой с флюсами.. Это наиболее распространенный способ, заключающийся в выдержке магния в печах сопротивления под слоем флюса. При этом происходит отстаивание (переход в осадок) запутавшихся в расплаве частиц электролита и шлама.
Источник