Способ деления клеток прокариот называется

Деление прокариотических клеток

Вы будете перенаправлены на Автор24

Деление прокариотических клеток – это процесс образования дочерних клеток прокариот из материнской клетки.

Способы деления прокариотических клеток

Ключевыми событиями в жизненном цикле клеток прокариот являются:

В большинстве случаев прокариотические клетки делятся с образованием двух идентичных по размеру дочерних клеток. Такой процесс иногда называют бинарным делением или делением пополам.

Чаще всего прокариотические клетки имеют клеточные стенки, поэтому бинарное деление сопровождается образованием септы.

Септа – это система перегородок между дочерними клетками, которая имеет свойство расслаиваться посередине.

Есть некоторые различия в процессе деления различных бактериальных клеток. Оригинальной является система деления грамотрицательных бактерий. Раскрытию данного механизма способствовало исследование бактерий E. сoli. Эти бактерии отличаются нарушенным механизмом деления. Внутри таких клеток происходят мутации, которые затрагивают гены, формирующие механизм клеточного деления. При этом формируется следующие фенотипы:

  • филаменты или длинные клетки, сформированные в том случае, когда септа не образуется по тем или иным причинам. Филаменты могут быть равномерно распределенными внутри клетки, содержать единственный нуклеоид, содержать несколько нуклеоидов;
  • миниклетки или клетки минимального размера, лишенные ДНК. Миниклетки образуются в том случае, если при клеточном делении формируется больше, чем одна септа;
  • безъядерные клетки или клетки нормального размера, которые лишены ДНК.

Механизмы осуществления клеточного деления

Также для прокариотических клеток характерен молекулярный механизм деления. В таком случае центральную роль играет септальное кольцо или кольцевая органелла, которая располагается посередине клетки и имеет способность сокращаться, образуя перетяжки между двумя дочерними клетками.

Готовые работы на аналогичную тему

Зрелое септальное кольцо представляет собой сложный белковый комплекс, который состоит из большого количества разных белков.

Все белки, которые входят в состав септального кольца делятся на следующие разновидности:

  • модулирующие сборку филаментов;
  • связывающие кольцо с мембраной;
  • координирующие процесс образования спеты с сегрегацией ДНК;
  • синтезирующие пептидогликан;
  • гидролизующие пептидогликан.

Все представленные типы белков играют собственную оригинальную роль в ходе перераспределения генетической информации и выполняют роль связующих звеньев в ходе деления клеток.

Для многих белков функция септального кольца до сих пор остается не определенной.

Процесс формирования зрелой формы септального кольца также имеет ряд собственных особенностей. После его деления белок формирует прилегающую ко внутренней мембране спираль, которая закручивается вдоль клеточной оси. Такая спираль постоянно меняет собственное положение и достаточно быстро перемещается от одного полюса клетки к другому. Примерно в это же время завершается процесс репликации ДНК, спираль захлопывается и формируется Z — кольцо посередине клетки. Многие ученые предполагают, что Z – кольцо на самом деле также представлено короткой спиралью.

Далее происходит процесс созревания спетального кольца. Он длится приблизительно 14 – 21 минуту и после прохождения данного времени к Z – кольцу присоединяются все ключевые белки. Все белки включаются в состав септального кольца в течение 1 – 3 минут.

До сборки септального кольца Z-кольцо стимулирует синтезпептидогликана в центре клетки таким образом, что клетка начинает удлиняться. Молекулярные основы данного процесса до сих пор не установлены в полной мере.

Одним из последних в септальное кольцо включаются белки, которые отвечают за синтез полярных пептидогликанов. А также белки обеспечивают частичный гидролиз пептидогликана на границе раздела между клетками.

Завершающим этапом клеточного деления называют формирование перетяжки и конечное разделение двух дочерних клеток. Образование перетяжек затрагивает все компоненты клеточной оболочки, а именно внутреннюю мембрану, внешнюю мембрану, слой пептидогликана.

Также существует мнение о том, что за инвагинацию внутренней части мембраны отвечает Z-кольцо. Но механизм передачи напряжения на эту мембрану до сих пор полностью не известен.

Одновременно с данным процессом ферменты септального кольца синтезируют или преобразуют пептидогликан септы. После формирования спеты в работу по делению клетки вступают ферменты пептидогликангидролазы, который помогает отделять будущие дочерние клетки друг от друга.

Процесс деления прокариотических клеток завершается инвагинацией и обособлением внешних мембран дочерних клеток.

Таким образом, процесс деления клеток прокариот имеет собственные оригинальные черты, сам механизм обычно называют прямым делением клетки или амитозом, но внутри него лежат процессы сложных преобразований белковых структур и реализации ДНК клетки.

Читайте также:  Как правильно засолить рыжики горячим способом

Иногда вариантом бинарного деления является почкование, которое рассматривается как неравномерное бинарное деление. При почковании на одном полюсе материнской клетки образуется вырост или почка, которая увеличивается в процессе роста. Постепенно почка достигает размеров материнкой клетки, отделяясь от нее через некоторое время.

Равновеликое бинарное деление дает начало таким дочерним клеткам, которые в последствии могут иметь достаточно большое количество морфологических и физиологических различий. Дочерняя и материнская клетки могут отличаться также и размерами, но при этом генетический набор информации идентичен и реализуется в дальнейшем по схожим принципам.

При подобном делении появляется возможность отслеживания процесса старения прокариотических клеток. Такие дочерние клетки гораздо жизнеспособнее и лучше приспосабливаются к условиям окружающей среды.

Источник

Деление прокариотических клеток

Деление прокариотических клеток — процесс образования дочерних прокариотических клеток из материнской. Ключевыми событиями клеточного цикла как прокариот, так и эукариот являются репликация ДНК и деление клетки. Отличительной чертой деления прокариотических клеток является непосредственное участие реплицированной ДНК в процессе деления [1] . В подавляющем большинстве случаев прокариотические клетки делятся с образованием двух одинаковых по размеру дочерних клеток, поэтому этот процесс ещё иногда называют бинарным делением. Так как чаще всего прокариотические клетки имеют клеточную стенку, бинарное деление сопровождается образованием септы — перегородки между дочерними клетками, которая затем расслаивается посередине. Процесс деления прокариотической клетки подробно изучен на примере Escherichia coli [2] .

Содержание

Деление грамотрицательных бактерий

Раскрытию механизма деления грамотрицательных бактерий способствовало изучение мутантных штаммов E. coli, у которых этот механизм нарушен. В результате мутаций, которые затрагивают гены, участвующие в делении клетки, могут формироваться следующие фенотипы:

  • филаменты — длинные клетки, которые формируются, если септа по тем или иным причинам не образуется. Филаменты бывают нескольких типов:
    • содержащие многочисленные нуклеоиды, равномерно распределённые по длине клетки. В таких штаммах сегрегация ДНК проходит нормально, но септа тем не менее не формируется; их называют Fts − (от англ.filamentation temperature-sensitive ) [3] ;
    • содержащие единственный нуклеоид примерно посередине клетки. В данном случае причиной образования филаментов являются нарушения в синтезе ДНК, соответственно штаммы называют Dna − [4] ;
    • содержащие многочисленные нуклеоиды посередине клетки. В дальнейшем ближе к концам таких клеток могут формироваться септы, и вследствие этого образовываться безъядерные клетки (см. ниже). Эти события являются результатом нарушений в механизме сегрегации ДНК, соответствующие штаммы чаще всего называются Par − (от англ.partition ) [4] ;
  • миниклетки — маленькие, лишённые ДНК клетки. Миниклетки образуются, когда при делении формируется больше одной септы или она находится в неправильном месте. Штаммы с такими нарушениями называют Min − (от англ.miniature ) [5] ;
  • безъядерные клетки — клетки нормального размера, лишённые ДНК. Как было сказано выше, безъядерные клетки могут образовываться из филаментов типа Par − . В то же время при некоторых мутациях, например Muk − (от яп. mukaku — безъядерный), в популяции клеток могут обнаруживаться только безъядерные клетки при отсутствии филаментов. Тем не менее такой фенотип также связан с нарушением сегрегации ДНК [6] .

Молекулярный механизм деления

Центральную роль в делении клеток грамотрицательных бактерий играет септальное кольцо — кольцевая органелла, расположенная примерно посередине клетки и способная сокращаться, образуя перетяжку между двумя новыми дочерними клетками. Зрелое септальное кольцо представляет собой сложный белковый комплекс, состоящий более чем из дюжины разных белков. Десять из них (FtsA, B, I, K, L, N, Q, W, Z и ZipA) абсолютно необходимы для формирования септы, и нарушение в их работе приводит к формированию филаментов типа Fts − [2] . Остальные компоненты не являются строго необходимыми, их функции могут частично перекрываться. Формирование септального кольца происходит в несколько этапов, новые белки присоединяются по одному в таком порядке: FtsZ→FtsA/ZipA→FtsK→FtsQ→FtsL/FtsB→FtsW→FtsI→FtsN [7] .

Белки, входящие в состав септального кольца, помимо FtsZ, можно разделить на несколько классов по функциям:

  • модулирующие сборку филаментов FtsZ (FtsA, ZipA, ZapA, ZapB);
  • связывающие Z-кольцо с мембраной (FtsA, ZipA);
  • координирующие образование септы с сегрегацией ДНК (FtsK);
  • синтезирующие (модулирующие) пептидогликан (FtsI, FtsW);
  • гидролизующие пептидогликан для расхождения дочерних клеток (AmiC, EnvC).

Однако для многих белков септального кольца точная функция до сих пор не известна [8] .

Формирование Z-кольца

Незрелую форму септального кольца называют Z-кольцом, по имени белка FtsZ, который играет ключевую роль в его формировании. Однако стоит отметить, что часто термины септальное кольцо и Z-кольцо используют как синонимы, поэтому в каждом отдельном случае это нужно оговаривать особо [2] . Белок FtsZ имеет тенденцию формировать длинные фибриллярные структуры. После деления FtsZ формирует прилегающую ко внутренней мембране спираль, закрученную вдоль оси клетки. Эта спираль постоянно меняет своё положение и быстро осциллирует от одного полюса клетки к другому [9] [10] . Примерно ко времени завершения репликации ДНК спираль FtsZ схлопывается, в результате чего формируется Z-кольцо посередине клетки [11] . Есть все основания предполагать, что Z-кольцо на самом деле также представляет собой короткую плотную спираль [10] .

Читайте также:  По способу питания цианобактерии синезеленые относятся

Белок FtsZ — прокариотический гомолог тубулина с похожей третичной структурой [1] . Это позволяет предполагать, что ассоциация FtsZ в Z-кольцо может напоминать сборку микротрубочек эукариот. FtsZ, как и тубулин, обладает ГТФазной активностью, гидролиз ГТФ обеспечивает полимеризацию FtsZ с образованием линейных протофиламентов. Z-кольцо — динамичная структура: молекулы FtsZ в составе кольца постоянно заменяются молекулами из цитоплазматического пула [12] [13] .

FtsZ сам по себе не имеет сродства к мембране, формирование кольцевой структуры из протофиламентов, их закрепление во внутренней мембране и стабилизацию Z-кольца обеспечивают белки FtsA и ZipA, которые взаимодействуют с FtsZ прямо и независимо. ZipA — интегральный белок внутренней мембраны, FtsA — цитоплазматический белок, который тем не менее может связываться с мембраной за счёт особой аминокислотной последовательности на C-конце. ZipA, по-видимому, характерен только для γ-протеобактерий, в то время как FtsA более универсален [2] . Z-кольцо у E. coli может формироваться при отсутствии одного из этих белков, но не двух сразу, что указывает на их перекрывающиеся функции [14] [15] .

Ещё два белка — ZapA и ZapB — включаются в состав Z-кольца на ранней стадии, однако их присутствие не строго обязательно для его формирования [2] [16] [7] . ZapA — универсальный для многих прокариот белок, а вот ZapB, по всей вероятности, есть только у γ-протеобактерий. ZapA связывается с FtsZ непосредственно, а ZapB связывается с ZapA. Интересно, что ZapB формирует ещё одну кольцевую структуру, которая находиться дальше от мембраны, чем Z-кольцо. Функции этих белков ещё до конца не установлены, однако предполагается, что они принимают участие в превращении спирали FtsZ в Z-кольцо, а также в последующей стабилизации Z-кольца [7] .

Созревание септального кольца

Z-кольцо существует в описанном виде 14—21 минуту (в зависимости от скорости деления), и только после этого к нему присоединяются все остальные ключевые белки, начиная с FtsQ [17] . В какое время присоединяется FtsK, пока точно не установлено. Оставшиеся белки включаются в состав септального кольца практически одновременно в течение 1—3 минут. До того момента, как начинает собираться септальное кольцо, Z-кольцо стимулирует синтез пептидогликана в центре клетки таким образом, что клетка начинает удлиняться. Молекулярный механизм этого процесса, однако, до сих пор не установлен [17] [2] .

Одними из последних в септальное кольцо включаются белки, ответственные за синтез полярного пептидогликана (FtsW, FtsI), и белки, обеспечивающие частичный гидролиз пептидогликана на границе раздела между двумя клетками (AmiA, B, C, EnvC, NlpD) [2] .

Формирование перетяжки

Завершающим этапом деления прокариотической клетки является формирование перетяжки и конечное разделение двух новых клеток. Образование перетяжки затрагивает все компоненты клеточной оболочки (внутреннюю мембрану, слой пептидогликана и внешнюю мембрану). Есть основания полагать, что за инвагинацию внутренней мембраны отвечает Z-кольцо, однако как именно оно передаёт напряжение на мембрану, пока не известно. Параллельно с с этим процессом ферменты септального кольца синтезируют (или модифицируют особым образом предсуществующий) пептидогликан септы [2] [17] . После формирования септы в работу вступают пептидогликангидролазы, которые отделяют будущие клетки друг от друга. Завершается процесс деления инвагинацией и обособлением внешних мембран клеток.

Источник

Особенности деления прокариотических клеток: способы и механизмы клеточного деления

Особенности деления прокариотических клеток

Способы деления прокариотических клеток

Деление прокариотических клеток представляет собой процесс образования дочерних клеток прокариот на основе материнской клетки.

Есть 2 наиболее важных события, происходящих на протяжении жизненного цикла клеток прокариот. Это:

Практически всегда прокариотические клетки делятся так, что в результате образуются две одинаковые по размеру дочерние клетки. В некоторых случаях такой процесс называют еще бинарным делением или делением пополам.

В большинстве случаев прокариотические клетки характеризуются наличием клеточных стенок. Поэтому в результате бинарного деления образуется септа.

Септа — это определенная система перегородок, находящихся между дочерними клетками, имеющая свойство расслаиваться посередине.

Читайте также:  Современные способы изучения человека

В ходе деления различных бактериальных клеток наблюдаются определенные различия. Оригинальная система деления — система деления грамотрицательный бактерий. Этот механизм был открыт в результате исследований бактерий E. coli. У этих бактерий механизм деления нарушен. Внутри этих клеток можно наблюдать мутации, затрагивающие гены, которые и формируют механизм клеточного деления.

Происходит формирование определенных фенотипов:

  • филаменты или длинные клетки. Они формируются, когда септа по определенным причинам не может сформироваться. Филаменты могут распределяться внутри клетки равномерно, иметь один нуклеоид или несколько;
  • миниклетки или клетки минимального размера. Эти клетки лишены ДНК. Их образование происходит в случае, если в ходе клеточного деления формируется не одна, а несколько септ;
  • безъядерные клети или клетки нормального размера. Они также лишены ДНК.

Механизмы клеточного деления

Один из механизмов деления, характерных для прокариотических клеток — молекулярный. В этом механизме септальное кольцо или кольцевая органелла играют ключевую роль. Кольцевая органелла находится посередине клетки и способна сокращаться — так образуются перетяжки между двумя дочерними клетками.

Зрелое септальное кольцо — это сложный белковый комплекс. В него входит большое количество разнообразных белков.

Входящие в состав септального кольца белки бывают нескольких разновидностей:

  • модулирующие сборку филаментов;
  • те, что связывают кольцо с мембраной;
  • белки, которые координируют процесс образования септы с сегрегацией ДНК;
  • те, что синтезируют пептидогликан;
  • белки, гидролизующие пептидогликан.

У перечисленных белков есть своя неповторимая роль в процессе перераспределения генетической информации. Также все они выступают в качестве связующих звеньев в ходе деления клеток.

Функция септального кольца для многих белков все еще остается неопределенной.

Процесс формирования зрелой формы септального кольца характеризуется определенными особенностями.

После того как происходит деление, с помощью белка формируется спираль, прилегающая ко внутренней мембране. Эта спираль закручивается вдоль клеточной оси, постоянно меняет свое расположение и относительно быстро перемещается от одного полюса клетки к другому. Почти одновременно с этим завершается процесс репликации ДНК. Происходит захлопывание спирали и формирование Z-кольца посередине клетки.

Ученые считают, что Z-кольцо представлено короткой спиралью.

Следующий этап — созревание септального кольца. Этот процесс достаточно быстрый — продолжается от 14 до 21 минут. По истечении этого времени все ключевые белки присоединяются к Z-кольцу. Всего за 1-3 минут эти белки включаются в состав септального кольца.

До момента сборки септального кольца Z-кольцо отвечает за стимулирование синтезпептидогликана в центре клетки — в результате такого стимулирования клетка удлиняется.

Молекулярные основы описанного процесса все еще в полной мере не выяснены.

Белки, отвечающие за синтез полярных пептидогликанов включаются в септальное кольцо одними из последних. Одновременно с ними также включаются белки, обеспечивающие частичный гидролиз пептидогликана на границе раздела между клетками.

Завершает процесс клеточного деления формирование перетяжки и окончательное разделение двух дочерних клеток. Образование перетяжек имеет отношение ко всем компонентам клеточной оболочки: в частности, внутренней мембране, внешней мембране и слою пептидогликана.

Есть предположения, что Z-кольцо отвечает за инвагинацию внутренней части мембраны. Однако все еще остается непонятным механизм передачи напряжения на эту мембраны.

Одновременно с инвагинацией происходит синтез и преобразование пептидогликана септы с помощью ферментов септального кольца. Как только септа сформирована, в процесс деления клетки включаются ферменты пептидогликангидролазы, благодаря которым происходит отделение будущих дочерних клеток одна от другой.

Завершает процесс деления прокариотических клеток инвагинация и обособление внешних мембран дочерних клеток.

Из описанного выше ясно, что процесс деления клеток прокариот отличается собственными оригинальными чертами. Этот процесс называют прямым делением клетки или амитозом. Однако внутри такого деления происходят сложные преобразования белковых структур и реализация ДНК клетки.

Как вариант бинарного деления выступает почкование — многие рассматривают его как неравномерное бинарное деление. В результате почкования на одном полюсе материнской клетки формируется вырост или почка — в процессе роста она увеличивается. Как только эта почка достигает размеров материнской клетки, через некоторое время она от нее отделяется.

Прямым бинарным делением делятся клетки, дочерние клетки которых потом могут иметь довольно много морфологических и физиологических различий. Дочерняя и материнская клетки могут различаться, в том числе, своими размерами, однако генетический набор информации остается одинаковым и реализуется в последствии похожими принципами.

Такое деление дает возможность отслеживать процесс старения прокариотических клеток. Образованные в результате этого варианта деления дочерние клетки более жизнеспособные и лучше приспосабливаются к внешней среде.

Источник

Оцените статью
Разные способы