Способ деления амитоз у кого эукариотов или

Амитоз или прямое деление клеток: определение, виды, биологическое значение

Амитоз или прямое деление клеток

Определение амитоза

Нередко можно встретить и другое название амитоза — простое деление.

Амитоз — это прямое деление клетки с помощью перетяжки или инвагинации.

В результате амитоза не происходит конденсация хромосом и образование аппарата деления.

Также прямое деление клеток не приводит к равномерному распределению хромосом между дочерними клетками.

Чаще всего амитоз характерен для стареющих клеток.

Когда осуществляется амитоз, то ядро клетки не теряет строение интерфазного ядра. При этом не происходит сложной перестройки всей клетки и спирализации хромосом, что характерно для митоза.

Амитотическое деление не обеспечивает равномерное распределение ДНК между двумя клетками — научно это доказано не было. Исходя из этого, предполагают, что в ходе такого деления ДНК распределяется между двумя клетками неравномерно.

Амитоз — достаточно редкое природное явление. Обычно он встречается у одноклеточных организмов. Также амитозом делятся клетки некоторых многоклеточных растений и животных.

Виды амитоза

Существует несколько видов амитоза:

  • равномерный. В результате такого деления происходит образование двух равных ядер;
  • неравномерный. Результатом этого амитоза являются неодинаковые ядра;
  • фрагментация. В ходе такого амитоза происходит распад ядра на множество мелких ядер различной величины, в том числе они могут быть одинаковыми.

Замечание 2

Результатом первых двух видов деления является образование двух новых клеток из одной.

Деление ядрышек с дальнейшим делением ядра за счет перетяжки происходит в клетках хряща, рыхлой соединительной и других тканей. Двухъядерная клетка приобретает кольцевую перетяжку цитоплазмы: при углублении она становится причиной полного деления клетки на две.

В хряще формируются изогенные группы — они происходят из одной клетки. Эти клетки заточены под выполнение в организме определенных функций, но у них нет возможности делиться митотически.

В ходе амитоза в ядре осуществляется деление ядрышек. Далее ядро и цитоплазма делятся при помощи перетяжки.

Фрагментация как один из видов амитоза приводит к образованию многоядерных клеток.

В отдельных клетках эпителия, печени можно наблюдать процесс деления ядрышек в ядре, за которым следует перешнуровывание кольцевой перетяжкой всего ядра. В результате образуется два ядра. Полученная двухъядерная или многоядерная клетка не может делиться митотически. Спустя некоторое время она просто стареет и погибает.

Так что же такое амитоз? Можно сделать вывод, что амитоз — деление клеток, в ходе которого не происходит спирализация хромосом и не образуется веретена деления. Нет точной информации о том, происходит ли перед амитозом синтез ДНК, как ДНК распределяется между дочерними ядрами.

В ходе деления определенных клеток митоз может чередоваться с амитозом.

Биологическое значение амитоза

Одни ученые считают амитоз примитивным способом деления, другие — вторичным явлением.

В сравнении с митозом, амитоз довольно редок, особенно у многоклеточных организмов. В последнем случае он считается неполноценным способом деления клеток, которые потеряли способность делиться.

Биологическое значение амитоза заключается в:

  • отсутствии процессов, которые обеспечивают равномерное распределение материала каждой хромосомы между двумя клетками;
  • образовании многоядерных клеток или увеличении числа клеток.

Амитоз является своеобразным видом деления, наблюдаемый также при нормальной жизнедеятельности клетки, но в большинстве случаев — когда эти процессы нарушены. К примеру, в результате влияния излучения или воздействия других вредных факторов.

Амитоз характерен для высокодифференцированных клеток. В клеточном делении большинства живых организмов этот вид деления играет второстепенную роль.

Источник

Биологическое значение амитоза: причины деления ядра и клеток и особенности амитоза

Каково биологическое значение амитоза

Важное и органическое свойство всех живых организмов — размножение или воспроизведение себе подобных.

Живая материя предстает в виде элементарных единиц на любом уровне организации. Проще говоря, она является дискретной. Соответственно, дискретность — одно из многочисленных свойств живого организма.

Структурные единицы клетки — органоиды.

Целостность клетки зависит от непрерывного воспроизведения новых органоидов взамен тем, что износились. Любой организм состоит из клеток, размножение которых обеспечивает его развитие и существование.

Почему ядро и клетки делятся

Деление клеток — основа размножения. При этом деление ядра всегда происходит до деления клетки. Предположительно, ядро и другие органеллы клетки возникли в результате специализации и дифференциации отдельных участков цитоплазмы в ходе исторического развития. Но в процессе индивидуального развития клеток, ядро происходит только из ядра — в результате деления.

Растительный организм растет, то есть, увеличивается в размерах, в результате увеличения количества клеток путем деления. Если организм одноклеточный, то деление клетки в нем является еще и способом размножения: увеличивается вес и количество новых особей.

Клетка растет определенный промежуток времени. В ходе ее роста изменяется соотношение между растущим объемом клеток и ее растущей поверхностью.

Рост поверхности всегда меньше в абсолютном выражении, чем рост объема. Все потому, что поверхность увеличивается квадратически, а объем — кубически.

Способы деления клетки

Питание клетки осуществляется через поверхность. В определенный момент времени поверхность не может сохранить объем клетки, и она начинает активно делиться.

Читайте также:  Самый эффективный способ вылечить алкоголизм

Клетка делится 4 различными способами:

Какова биологическая роль митоза, мейоза и эндомитоза, мы поговорим позже. А сейчас разберемся с амитозом.

Особенности амитоза

Амитоз — прямое деление ядра, происходящее, когда ядерное вещество перестраивается без образования хромосом.

Виды амитозного распределения

Амитоз впервые был описан в 1841 году немецким биологом Р. Ремарком, а сам термин «амитоз» ввел в науку немецкий гистолог В. Флеминг в 1882 году. Амитоз как способ деления встречается нечасто (реже, чем митоз). Происходит такое деление в результате перетяжки ядрышка, ядра и цитоплазмы.

Существенное отличие амитоза от митоза в том, что в первом случае конденсации хромосом не происходит: хромосомы удваиваются. Также для амитоза характерно сохранение физико-химических свойств цитоплазмы.

Согласно физиологическому значению, выделяют три вида амитозного распределения:

  1. Генеративный амитоз. Клетки делятся полноценно. Их дочерние клетки способны к митозному распределению и стандартному функционированию.
  2. Реактивный амитоз. Происходит в результате неадекватных действий, оказывающих влияние на организм.
  3. Дегенеративный амитоз. Такое распределение характеризуется процессом разрушения и смертью клетки.

Процесс амитоза

Амитозное деление клетки в результате расщепления ядра происходит цитоплазматическое сужение. Вначале ядро удлиняется, а после приобретает вид гантелей. При дальнейшем сужении ядро делится на два ядра. После деления ядра происходит деление цитоплазмы, которая делит клетку на две одинаковые (или примерного одинаковые) половины.

Никакого ядерного события не происходит — но образуются две дочерние клетки. Клетка увеличивается за счет ауксентического роста. Происходит расширение ядра, которое приобретает структуру в виде гантели с медианным сужением.

Срединная часть клеточной мембраны приобретает два сужения. Сужение ядра становится все глубже и в конечном счете делит ядро на два дочерних ядра — шпиндельное волокно при этом не образуется. Инвагинации клетки смешаются внутрь. Родительская ячейка делится на пополам: на две равных по размеру дочерние клетки.

Амитоз можно наблюдать у молодых нормально развитых клеток. Хотя чаще всего так делятся высокодифференцированные и более старые клетки. Путем амитоза делятся низкоуровневые организмы, такие как дрожжи, бактерии и пр.

Минус амитоза — невозможность генетической рекомбинации и вероятность экспрессии нежелательных рецессивных генов.

Значение амитоза

Плюс амитоза в том, что ядро и содержимое клетки делятся на две части. При этом дочерние клетки образуются без предварительных изменений структуры органелл, а также ядра.

Деление ядра на две части происходит даже без предварительного растворения оболочки ядра. Веретено деления не формируется — в случае других способов деления это происходит.

За делением ядра происходит деление протопласта и всей клетки на две части. Если ядро дробится на несколько частей, то получаются многоядерные клетки. Для амитоза характерно неравномерное распределение вещества ядра между дочерними ядрами, поэтому биологическая равномерность не обеспечивается. Но при этом образованные клетки отличаются структурной организацией и жизнедеятельностью.

На протяжении некоторого времени амитоз считался патологическим явлением — присущим только клеткам, патологически измененным. Но согласно последним исследованиям, эта мысль не нашла подтверждения. Многочисленные исследования доказывают, что способом амитоза делятся и вполне молодые нормально развитые клетки.

К примеру, амитоз можно обнаружить в клетках харовых водорослей, лука, традесканции.

Встречается амитоз и в специализированных тканях, в которых активно происходят метаболические процессы: в клетках тапетума микроспорангиев, в эндосперме семян отдельных растений и др.

Не характерен амитоз для клеток, в которых важно сохранение полноценной генетической информации: в яйцеклетках и клетках зародыша. В связи с этим некоторые ученые считают амитоз неполноценным способом размножения клеток.

Источник

§ 17. Простое бинарное деление. Митоз. Амитоз

Сайт: Профильное обучение
Курс: Биология. 11 класс
Книга: § 17. Простое бинарное деление. Митоз. Амитоз
Напечатано:: Гость
Дата: Четверг, 18 Ноябрь 2021, 20:01

Оглавление

Простое бинарное деление . Клетки прокариот в подавляющем большинстве случаев делятся с образованием двух одинаковых по размеру дочерних клеток. Этот процесс называется *простым бинарным делением* (простым делением надвое).

*Перед делением происходит репликация бактериальной хромосомы – кольцевой молекулы ДНК, которая в определенной точке прикреплена к плазмалемме. При этом образуются две идентичные дочерние хромосомы , также прикрепленные к цитоплазматической мембране (рис. 17.1). Затем специальные моторные белки перемещают дочерние хромосомы в противоположных направлениях, и расстояние между молекулами ДНК увеличивается.

В процессе деления плазмалемма впячивается (врастает) внутрь клетки между двумя разошедшимися хромосомами. Одновременно в этой области происходит достраивание клеточных стенок будущих дочерних клеток. В конечном итоге бактериальная клетка разделяется надвое. При этом в каждой дочерней клетке оказывается по одной хромосоме. Простое бинарное деление свойственно только прокариотам.* Эукариотические клетки, в отличие от бактериальных, имеют более сложную организацию. Поэтому для них характерны другие способы деления: митоз, амитоз, мейоз.

Митоз — основной способ деления клеток эукариот, в результате которого из одной материнской клетки образуются две дочерние с таким же набором хромосом, как и в материнской клетке. Продолжительность митоза в среднем составляет 1—2 ч. *При этом клетки животных, как правило, делятся быстрее (30—60 мин), чем растительные (2—3 ч).* Митоз — непрерывный процесс, но для удобства его разделяют на несколько фаз. Митозом могут делиться клетки с различными наборами хромосом — гаплоидные (1n), диплоидные (2n), триплоидные (3n) и т. д. Рассмотрим процесс митотического деления на примере диплоидной клетки (табл. 17.1).

Читайте также:  Способ образования гаструлы у человека

Таблица 17.1. Митоз

Схема

Фаза и процессы, происходящие в ней

Профаза. В ядре клетки начинается спирализация хроматина , что приводит к формированию хромосом. *В начале профазы нити хроматина , спутанные в клубок, едва различимы в световой микроскоп. Постепенно они укорачиваются и одновременно утолщаются, так что к концу профазы уже можно четко видеть отдельные хромосомы .* Каждая из них состоит из двух сестринских хроматид, соединенных в области центромеры. *В этом участке хромосомы располагаются особые белковые структуры — кинетохоры, к которым впоследствии будут прикрепляться нити веретена деления. Как правило, каждая хроматида имеет по одному кинетохору.* По мере формирования хромосом исчезают ядрышки. Оболочка ядра распадается на мелкие фрагменты. Частично спирализованные хромосомы оказываются в гиалоплазме, располагаясь в ней беспорядочно (хаотически). Набор хромосом и хроматид в клетке можно выразить записью 2n4c.

Во время профазы два клеточных центра (удвоение этого органоида, как вы знаете, произошло в S-периоде интерфазы) инициируют образование микротрубочек. Из них начинает формироваться веретено деления. В процессе его образования центриоли попарно расходятся к разным полюсам клетки. *Часть нитей веретена деления направляется от одного полюса к противоположному. Другие нити прикрепляются к кинетохорам и способствуют перемещению хромосом в экваториальную плоскость клетки. Кроме того, формируются короткие микротрубочки, которые отходят от полюсов клетки радиально, образуя так называемую фигуру звезды.* В клетках, не имеющих клеточного центра (что характерно, например, для большинства растений), веретено деления формируется без участия центриолей. *В этом случае центрами организации микротрубочек являются бесструктурные аморфные зоны, расположенные на полюсах клетки. Их называют полярными шапочками*

Метафаза. Завершается формирование веретена деления. Хромосомы располагаются в центральной части клетки, примерно на равном расстоянии от полюсов, *образуя так называемую метафазную пластинку*. При этом их центромеры находятся в экваториальной плоскости клетки, *а кинетохоры сестринских хроматид, связанные с нитями веретена деления, обращены к двум противоположным полюсам*. В метафазе спирализация хромосом достигает максимума. *Именно в этот период наиболее удобно изучать особенности строения хромосом и подсчитывать их общее количество в клетке*

Анафаза. Центромера каждой хромосомы разделяется надвое, и сестринские хроматиды отделяются друг от друга. С этого момента их называют дочерними хромосомами. Нити веретена деления, прикрепленные к центромерам, укорачиваются, и дочерние хромосомы расходятся к противоположным полюсам клетки. *Как правило, при этом они принимают V-образную форму: центромеры обращены к полюсам, а плечи — к экваториальной плоскости клетки. Перемещение всех дочерних хромосом к полюсам происходит с одинаковой скоростью.* В конце анафазы у каждого полюса клетки оказывается идентичный набор дочерних хромосом (молекул ДНК) — 2n2c. *В клетках, не имеющих клеточной стенки (у животных и др.), анафаза сопровождается растяжением клетки в длину. Для растительных и других клеток, покрытых клеточной стенкой, такое явление не характерно*

Телофаза. Нити веретена деления постепенно разрушаются. Вблизи каждого полюса клетки происходит деспирализация (раскручивание) дочерних хромосом с образованием хроматина . Одновременно с этим вокруг деспирализующихся хромосом формируются оболочки двух новых ядер. Далее в образовавшихся ядрах возникают ядрышки. *На этом завершается деление ядра — кариокинез, и начинается деление цитоплазмы с образованием двух дочерних клеток — цитокинез. Перед цитокинезом органоиды клетки, как правило, более или менее равномерно распределяются по цитоплазме.*

В экваториальной плоскости клеток животных компоненты цитоскелета формируют кольцевую перетяжку. Она углубляется, пока не произойдет полное разделение двух дочерних клеток. Клетки растений в связи с наличием жесткой клеточной стенки делятся иначе. *В экваториальную плоскость растительной клетки направляются пузырьки комплекса Гольджи. Здесь они сливаются друг с другом. При этом содержимое пузырьков используется для построения так называемой срединной пластинки, а из мембран пузырьков по обе стороны от нее достраиваются цитоплазматические мембраны будущих дочерних клеток. Срединная пластинка служит основой для формирования клеточных стенок новых клеток. В отдельных ее участках имеются поры. Благодаря этому между образующимися дочерними клетками сохраняются тяжи цитоплазмы (цитоплазматические мостики), которые, как вы уже знаете, называются плазмодесмами. В конечном итоге срединная пластинка соединяется с клеточной стенкой материнской клетки, и материнская клетка оказывается разделенной на две дочерние*

Запомнить последовательность фаз митотического деления клетки поможет фраза «ПРОфессор МЕТнул АНАнас в ТЕЛефон» или слово «ПриМАТ».

Как уже отмечалось, при митозе образуются две дочерние клетки с одинаковым набором хромосом — таким же, как в исходной материнской клетке, вступавшей в митоз. Отличие заключается лишь в том, что каждая хромосома дочерней клетки, вступающей в интерфазу нового клеточного цикла, до репликации представлена не двумя идентичными хроматидами, а одной.

Биологическое значение митоза. В ходе митоза молекулы ДНК, которые содержались в ядре материнской клетки, точно и равномерно распределяются между дочерними. Следовательно, две новые клетки получают одинаковую наследственную информацию и оказываются генетически идентичными друг другу и материнской клетке. Таким образом, митотическое деление обеспечивает точную передачу генетической информации в ряду поколений клеток, обусловливает поддержание постоянного числа хромосом.

Благодаря митозу в многоклеточном организме происходит увеличение количества клеток. Это лежит в основе роста и развития всех многоклеточных организмов, а также обеспечивает процессы регенерации — восстановления поврежденных тканей и органов. Бесполое размножение многих организмов (деление одноклеточных протистов, почкование кишечнополостных, вегетативное размножение растений и т. д.) также обусловлено митотическим делением клеток.

*Нормальный ход митоза может быть нарушен различными внешними или внутриклеточными факторами. Например, действие ионизирующих излучений и определенных химических веществ может приводить к разрыву хромосом на отдельные фрагменты. При этом некоторые из них оказываются лишенными центромеры. Такие участки хромосом не могут связываться с нитями веретена деления и, следовательно, перемещаться под их действием. Если во время телофазы хромосомный фрагмент, лишенный центромеры, находится возле одного из полюсов, он может быть включен в состав одного из дочерних ядер. Если же подобный участок хромосомы располагается вблизи экваториальной плоскости клетки, вероятность его вхождения в ядро одной из формирующихся клеток практически равна нулю. Такие хромосомные фрагменты в дальнейшем подвергаются расщеплению.

Читайте также:  Назовите нестандартный способ композиционного оформления василия теркина

Иногда из-за неправильного формирования нитей веретена деления сестринские хроматиды той или иной хромосомы , отделившиеся друг от друга, перемещаются к одному и тому же полюсу. В результате одна из дочерних клеток получает лишнюю хромосому (2n + 1), а в другой клетке, наоборот, одна из хромосом не будет иметь парной, гомологичной хромосомы (2n — 1). Действие на клетку некоторых химических веществ может приводить к изменению вязкости гиалоплазмы или нарушению процессов сборки и распада микротрубочек веретена деления. При этом в анафазе часто наблюдается несинхронное расхождение дочерних хромосом к полюсам. Одни из них движутся быстрее, а другие — медленнее. В итоге «опоздавшие» хромосомы не включаются в состав дочерних ядер, а образуют в цитоплазме так называемые микроядра, которые впоследствии разрушаются.

Известны химические соединения, которые разрушают нити веретена деления, но не влияют на процесс разделения сестринских хроматид. Одним из таких веществ является алкалоид колхицин. Его воздействие на клетку, находящуюся в метафазе митоза, приводит к распаду микротрубочек веретена деления. Далее сестринские хроматиды разделяются, но без участия веретена деления они не могут разойтись к полюсам и остаются в центральной части клетки. Через некоторое время вокруг этих хроматид (теперь уже дочерних хромосом) образуется общая ядерная оболочка, и они входят в состав одного ядра. Так возникает полиплоидная клетка, содержащая набор хромосом, удвоенный по сравнению с исходным.

Встречаются также случаи, когда в телофазе после образования двух ядер не происходит цитокинез. Вследствие этого клетка оказывается двуядерной.

Таким образом, нарушение правильного протекания митоза может приводить к неравномерному распределению генетического материала между дочерними клетками, возникновению полиплоидных или двуядерных клеток и т. д.*

Амитоз . При амитозе в клетке не формируется веретено деления, в ее ядре не происходит спирализация хроматина , сохраняются ядрышки и ядерная оболочка. Оставаясь в состоянии, характерном для интерфазы, ядро делится надвое перетяжкой. При этом молекулы ДНК ( хромосомы ) распределяются между дочерними ядрами неравномерно, случайным образом. В ряде случаев амитотическое деление ядра не сопровождается последующим *цитокинезом*. Это приводит к появлению двуядерных и даже многоядерных клеток. Если же дочерние клетки все-таки образуются, то клеточные компоненты, как и ДНК, распределяются между ними случайно и неравномерно.

Амитоз — сравнительно редкое явление. Этим способом делится, например, большое ядро инфузорий. У многоклеточных организмов амитоз наблюдается при различных патологических процессах (рост опухолей, воспаление и др.), а также в стареющих, обреченных на гибель клетках. Как правило, клетки, возникшие в результате амитоза, теряют способность вступать в нормальный клеточный цикл и в дальнейшем делиться митозом.

Для прокариотических клеток характерно простое бинарное деление, для эукариотических — митоз, амитоз и мейоз. Митоз — основной способ деления клеток эукариот, в результате которого из одной материнской клетки образуются две дочерние с таким же набором хромосом. В ходе митоза происходит спирализация хроматина с образованием компактных хромосом и формирование веретена деления. Затем сестринские хроматиды каждой хромосомы отделяются друг от друга и с помощью веретена деления равномерно распределяются между образующимися дочерними клетками. У многоклеточных организмов митотическое деление клеток обеспечивает процессы роста, развития и регенерации. В основе бесполого размножения многих организмов также лежит митоз.

При амитозе ядро клетки делится перетяжкой без спирализации хроматина и образования веретена деления. Это приводит к неравномерному распределению молекул ДНК между дочерними ядрами. Во многих случаях амитотическое деление ядра не сопровождается последующим разделением клетки на две дочерние.

1. Какие способы деления характерны для клеток прокариот? Для эукариотических клеток?

Амитоз , митоз, мейоз, простое бинарное деление.

2. Что такое митоз? Охарактеризуйте фазы митоза.

3. В связи с чем дочерние клетки, образовавшиеся в результате митоза, получают одинаковую наследственную информацию? В чем заключается биологическое значение митоза?

4. Установите соответствие между соматическими клетками человека, находящимися в различных периодах интерфазы и митоза, и количеством хромосом и хроматид в этих клетках.

5) У каждого полюса клетки в конце анафазы

6) В каждой дочерней клетке в конце телофазы

а) 23 хромосомы , 23 хроматиды

б) 23 хромосомы , 46 хроматид

в) 46 хромосом, 46 хроматид

г) 46 хромосом, 92 хроматиды

5*. В чем заключаются различия между митозом и амитозом? Как вы думаете, почему митоз называют непрямым делением клетки, а амитоз — прямым?

6*. В ядре неделящейся клетки наследственный материал (ДНК) находится в виде аморфного рассредоточенного вещества — хроматина . Перед делением хроматин спирализуется и образует компактные структуры — хромосомы , а после деления возвращается в исходное состояние. Для чего клетки совершают такие сложные видоизменения своего наследственного материала?

Источник

Оцените статью
Разные способы