Методы базирования при сборке самолетов
На выбор методов базирования влияют конструктивно – технологические свойства изделий:
— требования точности и взаимозаменяемости изделий;
— пространственная взаимосвязь элементов конструкций;
— относительная жесткость деталей;
— доступ к зоне выполнения операций при установке, фиксации и соединении собираемых изделий.
Методы базирования при сборке ЛА отличаются друг от друга характером средств обеспечения определенного положения и фиксации базируемых элементов изделия. Основные методы базирования в самолетостроении условно разделяются на две большие группы:
I. Базирование по поверхности собираемого изделия:
1. Метод базирования по базовым поверхностям (поверхностям сопряжения, по месту данного элемента в конструкции). Применяется, когда собираемые детали обладают большой пространственной жесткостью, а размеры готового изделия обеспечиваются системой допусков и посадок. Положение базируемого элемента полностью определено и зафиксировано с помощью других элементов конструкции. Роль сборочной базы выполняют сами элементы изделия. Фиксация осуществляется прижатием базируемого элемента к другим элементам изделия. В конструкциях ЛА по данному методу собираются узлы шасси, элементы гидро-газовой аппаратуры, тяги управления, узлы системы управления и т.п.;
2. Метод базирования по разметке (базирование по базовым линям на детале). Требует обязательного наличия в составе собираемого изделия базовой детали, на поверхности которой наносятся линии разметки. В качестве сборочных баз используются специально нанесенные с чертежа на базовую деталь линии или точки с размерами. Разметка базовых линий и точек осуществляется фотоконтактным способом с конструктивного плаза, по шаблонам ШР или вручную с помощью универсальных измерительных средств. Наиболее точной и наименее трудоемкой является разметка фотоконтактным способом. Базирование по разметке является наиболее трудоемким и не обеспечивающим высокой точности методом базирования ( ). Однако метод не требует специального оборудования и оснастки, потому разметка применяется в случаях, когда к изделиям не предъявляются высокие требования взаимозаменяемости и точности;
3. Базирование по сборочным отверстиям (СО). Взаимное положение собираемых элементов определяется системой сборочных отверстий, расположенных в паре конструктивно связанных деталей, одна из которых используется в качестве базовой. Установка остальных деталей в процессе сборки осуществляется на базовую деталь, совмещая отверстия в базовой и присоединяемой деталях. Положение сборочных отверстий определяется при изготовлении деталей с использованием увязанных комплектов ШОК. Базирование по СО позволяет снизить трудоемкость сборки, уменьшить затраты на оснастку. При этом метод достаточно прост. Однако его применение приводит к увеличению объема заготовительно-штамповочных работ из-за необходимости выполнении СО, росту числа заготовительной и контрольной оснастки. Базирование по СО целесообразно в тех случаях, когда точность сборки, например, внешнего обвода, удовлетворяет заданным требованиям ( ). Разновидностью базирования по СО является базирование по базово-фиксирующим отверстиям, выполненным в узлах: направляющие отверстия (НО) и установочные отверстия (УБО);
II. Базирование по внешней поверхности специально вводимых жестких носителей (в сборочных приспособлениях):
1. Базирование по координатно-фиксирующим отверстиям (КФО). Производится совмещением специальных отверстий в деталях и фиксаторов сборочного приспособления. Метод является развитием базирования по СО, только более точный. Например, для внешнего обвода, . Вследствие простоты приспособлений целесообразно использование этого метода в мелкосерийном производстве и для машин больших габаритов. При сборке по КФО положение отверстий строго соответствует конструктивным базам. Что достигается использованием ПК и ИС. Для увязки контуров деталей и КФО используются ШК и ШОК. В отличие от СО, КФО могут располагаться не в тех местах деталей, где по чертежу должно быть отверстие по болт или заклепку, а в специально отведенных местах, удобных с технологической точки зрения: простоты и удобства увязки технологической оснастки, упрощения конструкции приспособления и самого процесса сборки. КФО обычно располагают в одной плоскости на расстояниях кратным 50 мм. Положение КФО в деталях и приспособлениях увязывается с базовыми осями изделия, за счет чего обеспечивается взаимная увязка положения собираемых элементов относительно друг друга. Точность базирования по КФО выше, чем точность по СО, т.к. размеры между осями КФО определяются размерами сборочного приспособления, точность которого выше точности детали изделия. Кроме того, КФО располагают в наиболее жестких деталях конструкций. Разновидностью базирования по КФО является базирование по отверстиям подстыковые болты (ОСБ);
2. Базирование по поверхности каркаса. Элементы каркаса прижимаются к базовым поверхностям сборочного приспособления и, таким образом, осуществляется взаимная координация деталей. Затем на собранный каркас устанавливается обшивка, при этом на замыкающий размер оказывает влияние погрешность толщины обшивки. Точность внешнего обвода мм;
3. Базирование по поверхности обшивки. Базовые элементы сопрягаются с изделием по наружному контуру аэродинамических обводов агрегатов. Сборку начинают с установки обшивки в приспособлении, затем устанавливают элементы каркаса, базируя их на обшивку. Этот метод обеспечивает наибольшую точность аэродинамических обводов, т.к. погрешности входящих деталей не влияют на окончательный размер собранного изделия, что достигается компенсацией погрешностей в процессе установки их в приспособлении. Разновидностью метода является базирование по внутренней поверхности обшивки. В этом случае обшивка устанавливается в сборочное положение по поверхности макетных деталей и прижимается к ним на период соединения обшивки через компенсаторы деталями каркаса. Точность по наружной поверхности обшивки внешнего обвода , по внутренней поверхности обшивки (при замкнутой нервюре)
Базирование в приспособлении широко используется для сборки нежестких узлов и панелей, при сборке секций и агрегатов планера. Базами в приспособлении служат базовые элементы: рубильники, стапельные плиты, упоры, которые в процессе сборки непосредственно сопрягаются с базируемыми изделиями. Сопрягаемые с изделиями поверхности базовых элементов образуют контуры, представляющие собой отраженный вид контуров сечений. Сборочное приспособление обеспечивает требуемое взаимное положение сопрягаемых деталей и определенное положение обрабатываемого инструмента, относительно деталей, придает заданную форму нежестким деталям и узлам в процессе сборки, позволяет использовать принцип компенсации погрешностей изготовления деталей.
Однако сборочные приспособления имеют ряд недостатков:
1) Дороги и сложны по конструкции;
2) Точность изготовления приспособления в 3-10 раз выше точности собираемого изделия;
3) Возникает возможность появления значительных погрешностей при сборке агрегатов в разных приспособлениях;
4) Использование жестких приспособлений может вызвать внутренние напряжения в результате остаточных упругих деформаций и др.
Источник
Сборка по базе «поверхность каркаса»
При такой сборке обшивки (или панели) устанавливаются на базовую поверхность каркаса и прижимаются к ней на период выполнения соединения. Существует несколько вариантов этого метода базирования. (Рис. 4.9).
Рис.4.9. Сборка по базе «поверхность каркаса».
1- обшивка (панель) до установки на каркас; 2-обшивка, установленная на каркас; 3-каркас; 4- Элементы сборочного приспособления, прижимающие обшивку к каркасу; 5-фиксация каркаса в сборочном приспособлении.
Размер собранного агрегата в приспособлении с базированием по поверхности каркаса будет:
где Нх – номинальный размер внешнего обвода собираемого изделия в рассматриваемом сечении; Нк – номинальный размер каркаса; δ1, δ2 – номинальная толщина обшивок (панелей).
Таким образом, погрешность при сборке будет:
Если обшивке присоединяется к каркасу при помощи клея или припоя (рис. 2.9), то погрешность внешнего обвода будет
здесь ∆δк ’ , ∆δк ’’ – погрешности по толщине слоя клея (припоя).
Рис.4.10. Погрешности при базировании по поверхности каркаса
1 – Обшивка; 2 — Слой клея (припой); 3 – Соты; 4 — Резиновый мешок.
Таким образом, рассмотренные варианты базирования по поверхности каркаса показывают, что отклонения ∆Нх в точности обвода изделия зависят от точности образования обводов каркаса, отклонений по толщине обшивок и толщине слоя связующего вещества (клея или припоя).
Если поверхность каркаса волнистая, это проявляется и на внешних обводах обшивки. Это объясняется тем, что жесткость каркаса больше жесткости обшивки, прижимаемой к нему силами N-N.
Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет
Источник
Базирование заготовок при обработке
Базирование заготовок – придание изделию необходимого положения относительно выбранной координатной системы. Требуемое местоположение достигается при помощи закрепления детали на столе токарного или фрезерного станка и других установочных приборах. После процедуры закрепления заготовка принимает устойчивое положение в трехмерном пространстве, лишаясь 3 степеней свободы: по осям абсцисса, ордината и аппликата. В результате она не сможет перемещаться в выбранной координатной системе.
Базирование осуществляется для повышения точности во время изготовления и обработки детали.
Для правильного определения местоположения изделия необходимо знать основные схемы, методы и особенности процедуры базирования.
Схемы базирования
Схемой базирования называется чертеж, где с помощью графического изображения указывается местоположение опорных точек устанавливаемого изделия на поверхностях базирования. Базы подразделяются на следующие подвиды:
- Конструкторские: определяют местоположение сборочного элемента, принадлежащего заготовке.
- Технологические: указывают относительное местонахождение детали во время ее обработки, эксплуатации или ремонтирования.
- Измерительные: находят месторасположение изделия и элементов измерения.
База может лишать обрабатываемый объект от 1 до 3 степеней свободы, что исключает возможность его передвижения в координатной системе. На схемах она обозначается в виде мнимой или реальной плоскости. Базы выбираются во время проектирования изделия и используется при изготовлении и последующей обработке заготовки.
При выборе базовых поверхностей применяются принципы совмещения и постоянства базовых поверхностей. В виде технологических баз выступают одинаковые поверхности заготовки. Во время наложения баз возникает небольшое отклонение детали. Для поддержания данных принципов на изделиях образуют несколько вспомогательных поверхностей: отверстия в деталях корпуса и обработанные отверстия. Если принципы не соблюдаются, то берется обработанная поверхность, выступающая в качестве новой базы. Она улучшает точность и жесткость расположения детали.
На схеме базирования все точки имеют собственную нумерацию. Во время наложения геометрических поверхностей изображается точка, вокруг которой указываются номерные знаки совмещенных точек. Процесс нумерации осуществляется с основной базы, концентрирующей на себе наибольшее число точек опоры.
При нанесении графических обозначений на схему должно быть изображено наименьшее количество проекций детали, достаточных для изображения основных точек опоры. Также на ней необходимо изобразить установочные элементы, служащих для закрепления детали: зажимы и цанговые патроны.
Построение схемы базирования производится по правилу шести точек. Оно заключается в лишении заготовки 6 степеней свободы при помощи использования наборов из 3 баз с 6 точками опоры. С его помощью происходит одновременное наложение 6 двухсторонних геометрических связей, что обеспечивает полную неподвижность детали. Если осуществляется базирование конической заготовки, то для обеспечения ее устойчивого положения необходимо применять набор из 2 базовых поверхностей.
При базировании изделий в промышленности используется способ автоматического получения размерных характеристик заданной точности на станках с предварительно установленными настройками. Установка упоров осуществляется от технологических базовых поверхностей заготовки. Во время этой процедуры используется набор из 3 баз. При этом также применяют полную схему базирования, лишая изделие 6 степеней свободы.
Схемы для определения местоположения детали подразделяются на следующие категории:
- Базирование детали по торцу и отверстию, образующими 5 точек опоры. Этот вид схемы базирования упрощает процесс определения местоположения заготовки. Он широко применяется при обработке моторов-редукторов и скоростных коробок.
- Базирование изделия по плоскости, отверстию и торцу. В этом случае оси установочных элементов детали параллельны базовой поверхности. Посредством этой категории схем осуществляется полное базирование. Отличительной особенностью этого вида базирования является высокая точность размещения отверстий.
- Базирование по 2 отверстиям, пересекающимся с плоскостью под углом в 90°. Данный вид схемы позволяет применять принцип постоянства во время производственных процессов и осуществлять закрепление заготовок на автоматических линиях.
Применение схем зависит от величины диаметра и местоположения отверстий, а также от расстояния между обрабатываемыми поверхностями.
Базирование призматической заготовки
Призмой является многогранник, у которого 2 грани являются равными многоугольниками. Она представляет собой установочное приспособление. Его поверхность является пазом и образована 2 наклонными плоскостями. Изготавливаются призматические фигуры с углом 90° и 120°. В промышленности призмы используются для нахождения расположения оси детали с неполной цилиндрической поверхностью. Эта фигура способна определять положение осей абсцисса, ордината и аппликата, поэтому она используется при базировании.
Во время базирования детали в призме опоры располагаются в координатных плоскостях. Призматическая заготовка базируется в координатный угол для выполнения принципа совмещения баз. При размещении заготовки в призме используются 3 поверхности. Под углом в 90° к изделию прикладывается сила. В результате возникновения трения между соприкоснувшимися поверхностями уменьшается величина смещения изделия в различных направлениях.
Если поменять направления вектора прикладываемой силы, то заготовка прижмется ко всем установочным базам одновременно. Если на установочной базе присутствует припуск, то его нужно удалить при помощи регулируемых опор. Заготовка не сможет двигаться вдоль координатных осей, потому что она лишена всех 6 степеней свободы. Установочной базой выступает плоскость с наибольшим размером. Направляющей базой считается поверхность с наибольшими показателями протяженности.
Для определения местоположения выбирается призма с неширокими установочными базами. Если деталь располагает обработанной базой, то используют призму с большой длиной. При базировании в призме возможно определить направление только в 1 координатной плоскости.
Базирование деталей цилиндрической формы
Фигура цилиндрической формой обладает 2 плоскостями симметрии. При пересечении они образуют ось, используемую при процедуре базирования. Во время определения местоположения цилиндрической заготовки применяются плоские поверхности, образующие вместе с осью набор баз. Они состоят из двойной направляющей и опорных базовых поверхностей. Они несут 4 точки опоры. Благодаря этой конструкции мастер сможет определить направление валика заготовки в 2 системах координат.
Чтобы указать правильное местоположение цилиндрической детали в пространстве, нужно найти 5 координатных точек. Они лишают изделие 5 степеней свободы. Последняя степень отнимается посредством следующих способов:
- Ориентирование на шпоночный паз, если этот элемент присутствует на заготовке.
- При помощи создания трения между базовыми поверхностями приложением силы.
Во время установки детали цилиндрической формы в обоих случаях рекомендуется использовать 1 единственную базовую поверхность, чтобы избежать смещения изделия.
При расположении деталей в центрах применяются короткие цилиндрические отверстия. Одно из них выступает в роли упорной базовой поверхности, второе – в роли центрирующей базы. Каждая базовая поверхность лишает заготовку 3 степеней свободы.
Базирование деталей типа дисков
Заготовки в форме диска представляют собой предмет в виде круга или низкого цилиндра. Они обладают небольшой длиной и 2 плоскостями симметрии. Из-за необычного строения возникают сложности во время обработки торцов дисковых изделий. Торцовые поверхности являются параллельными, они пересекаются с осью отверстия под углом 90°. Производятся диски из листового проката при помощи отрезания или воздействия ацетилено-кислородного пламени.
Правильное местоположение деталей типа диск будет являться прочным и устойчивым, если оно расположено на торце, выступающем в роли установочной базы.
Центрирование производится при помощи самоцентрирующих кулачков. На ось с цилиндрической поверхностью накладываются 2 связи, что не позволяет заготовке свободно перемещаться по осям абсцисса и ордината. Чтобы лишить диск возможности перемещения по оси аппликата, необходимо наложить дополнительную геометрическую связи. В этом случае ось является опорной базой. Для деталей типа диск используется установочная, опорная и двойная опорная базы.
В начале процедуры базирование диск крепится на кулачках патрона. Торец детали обтачивают до кулачков. Внешнюю поверхность, оставшуюся необработанной, подрезают. Для достижения лучшей точности используется чистое обтачивание, во время которого заготовка крепится посредством прижима трения. Диск должен прижиматься либо к кулачкам патрона, либо к его оправе. Опорные базы детали размещаются максимально близко к обрабатываемой поверхности зубьев. Шестерни диска обрабатываются в сложенном состоянии на станках. При их базировании используются инструменты – монеты.
Расчет погрешности базирования заготовки в приспособлении
Погрешностью базирования называется отклонение конструкции заготовки относительно заданного местоположения. Она применяется во время обработки, эксплуатации и настройки детали на токарных или фрезерных станках. Выделяют следующие разновидности погрешности базирования заготовки:
- Погрешность закрепления: возникает при зажатии детали на столе станка. Во время этого процесса происходит смещение установочных баз, лимитирующих движение заготовки. Погрешность закрепления обусловлена неправильным использованием установочных приборов и зажимов. Данные факторы приводят к деформации заготовленного материала.
- Погрешность установки: появляется после закрепления изделия на станковом оборудовании. Ее возникновение обусловлено несоответствие форм базовых поверхностей и наличие большого количества металлической стружки, образующейся во время нарезания детали. Происходит засорение обрабатываемой поверхности и последующее отклонение детали. Для минимизации погрешности заготовки важно следовать принципам постоянства и смещения базовых поверхностей.
- Систематическая погрешность: образуется из-за человеческого фактора —наблюдательности и аккуратности мастера, выполняющего настройку инструментов. Она возникает при нарушениях во время измерения размерных характеристик детали, написании неправильных чертежей и схем базирования и упрощении формул, необходимых для проведения расчетов.
На величину погрешности и точность обработки оказывают непосредственное влияние следующие факторы:
- Разница между действительными и номинальными размерами заготовки.
- Значение отклонения устанавливаемых конструкций относительно их взаимных расположений: перпендикулярности, концентричности и параллельности.
- Поломка станков и иных приспособлений, использующихся во время базирования. Неисправность оборудования обусловлена несоблюдением правил эксплуатации или недочетами, возникшими во время производства несущих конструкций приборов. Эти факторы приводят к возникновению зазоров на винтах и шпинделях установочного оборудования.
- Изменение формы заготовки, произошедшие до проведения процедуры обработки. Они обусловлены внешними повреждениями конструкции или неправильным местоположением изделия.
Расчет погрешности базирования проводится при помощи использования математической формулы: εБ.ДОП ≤δ — ∆. Во время определения величины отклонения важно учитывать, что действительная погрешность обязана быть меньше допустимых значений. Результат расчетов всегда является неточным.
Для расчета погрешности был разработан общий алгоритм вычисления:
- Необходимо правильно определить местоположение базы на основе размеров устанавливаемой детали.
- Найти расположение технологической базовой поверхности, что позволит мастеру правильно подобрать место размещения заготовки для проведения ее обработки.
- Если технологическая база совмещается с измерительной, то погрешность базирования будет равняться 0.
- В случае, когда базы различаются и не совмещаются при наложении, то осуществляются геометрические расчеты величины отклонения. Результаты измерения вычитаются из предельно допустимых значений погрешности. Разность показывает действительную величину отклонения изделия. Все расчеты производятся по общей формуле: [εб] = Т — ∆ж.
Если отсутствуют общий базис и предельные значений погрешности, то необходимо найти исходную базовую поверхность. Если она не изменяет исходное местоположение, то значение погрешности равняется 0.
Источник