Спирт синтетический способ получения каучука

Способ получения синтетического каучука по методу Лебедева

Содержание

Предпосылки создания синтетического каучука

Одно дерево бразильской гевеи в среднем, до недавнего времени, было способно давать лишь 2-3 кг каучука в год; годовая производительность одного гектара гевеи до Второй Мировой войны составляла 300—400 кг технического каучука. Такие объёмы натурального каучука не удовлетворяли растущие потребности промышленности. Поэтому возникла необходимость получить синтетический каучук. Замена натурального каучука синтетическим даёт огромную экономию труда.

Современная, всё развивающаяся и усложняющаяся техника требует каучуки хорошие и разные; каучуки, которые не растворялись бы в маслах и бензине, выдерживали высокую и низкую температуру, были бы стойки к действию окислителей и различных агрессивных сред.

Получение синтетического каучука в России

В 1910 году С. В. Лебедеву впервые удалось получить синтетический каучук и бутадиен. Сырьём для получения синтетического каучука служил этиловый спирт, из которого получали 1,3-бутадиен (он оказался более доступным продуктом, чем изопрен). Затем через реакцию полимеризации в присутствии металлического натрия получали синтетический бутадиеновый каучук.

В нашей стране не было известно природных источников для получения натурального каучука, а из других стран каучук к нам не завозился. Ещё в 1931 году И. В. Сталин сказал: «У нас имеется в стране всё, кроме каучука. Но через год-два и у нас будет свой каучук».
Не прошло и года, как колхозник Спиваченко указал ботанику Л. Е. Родину в горах Тянь-Шаня в Казахстане на каучуконосный одуванчик кок-сагыз, содержащий в корнях от 16 до 28% каучука.
,

Необходимость создания сырьевой базы резиновой промышленности побудила советское правительство в начале 1926 г. объявить конкурс на лучший способ получения синтетического каучука. Последний срок представления предложений (и одновременно 2 кг образца синтетического каучука) был назначен на 1 января 1928 г. На призыв правительства отозвался С. В. Лебедев, который организовал группу исследователей из семи человек. Первый успех в работе определился в середине 1927 г. И только 30 декабря 1927 г. 2 кг дивинилового каучука вместе с описанием способа С. В. Лебедева было отправлено на конкурсную комиссию. Его способ заключался в полимеризации 1,3-бутадиена под действием натрия.

  • С 1932 г. было начато промышленное производство 1,3-бутадиена по методу Лебедева, а из 1,3-бутадиена — производство каучука.
  • В 1926 году ВСНХ СССР объявил конкурс по разработке промышленного способа синтеза каучука из отечественного сырья. К 1 января 1928 года в жюри нужно было представить описание способа, схему промышленного получения продукта и 2 кг каучука. Победителем конкурса стала группа исследователей, которую возглавлял профессор Медико-хирургической академии в Ленинграде С. В. Лебедев.
  • В 1932 году именно на базе 1,3-бутадиена возникла крупная промышленность синтетического каучука. Были построены два завода по производству синтетического каучука. Способ С. В. Лебедева оказался более разработанным и экономичным.
  • В 1908—1909 годах С. В. Лебедев впервые синтезировал каучукоподобное вещество при термической полимеризации дивинила и изучил его свойства.
  • В 1914 году учёный приступил к изучению полимеризации около двух десятков углеводородов с системой двойных или тройных связей.
  • В 1925 году С. В. Лебедев выдвинул практическую задачу создания промышленного способа синтеза каучука. В 1927 году эта задача была решена.

Под руководством Лебедева были получены в лаборатории первые килограммы синтетического каучука. С. В. Лебедев изучил свойства этого каучука и разработал рецепты получения из него важных для промышленности резиновых изделий, в первую очередь автомобильных шин.

  • В 1930 году по методу Лебедева была получена первая партия нового каучука на опытном заводе в Ленинграде, а спустя два года в Ярославле пущен в строй первый в мире завод по производству синтетического каучука.

Казанский завод синтетического каучука

Позднее, на основе реакции Лебедева был построен и запущен завод Синтетического Каучука в г.Казани.

История Казанского завода Синтетического Каучука — одна из славных страниц развития индустриальной России. К концу 30-х годов в стране уже работали 3 завода СК, Казанский стал четвертым. Он так и назывался СК — 4. До пуска крупных нефтехимических производств, давших каучук из нефтепродуктов было еще далеко. И заводы СК оставались единственными поставщиками стратегически важных продуктов. В годы Великой Отечественной войны синтетический каучук шел на изготовление боевой техники, позже заводы СК активно участвовали в восстановлении разрушенной войной экономики, способствовали ускорению технического прогресса в 50 — 60-е годы.
Закладка фундамента завода СК — 4 была произведена в 1931 году. С 1935 года название предприятия — «Завод СК им. Кирова». В эксплуатацию завод был пущен в 17 ноября 1936 году, в мае 1939 года на заводе был получен самый дешевый каучук в мире. В 1940 году завершена полная реконструкция завода, позволившая увеличить мощность в 3,5 раза. В 1949 году запущено производство латекса, каучука ДА, введена в производство серия уникальных каучуков специального назначения, определяющая лицо завода и по сегодняшний день.

Получение синтетического каучука

В разработке синтеза каучука Лебедев пошёл по пути подражания природе.

Поскольку натуральный каучук — полимер диенового углеводорода, то Лебедев воспользовался также диеновым углеводородом, только более простым и доступным — бутадиеном.
Сырьём для получения бутадиена служит этиловый спирт. Получение бутадиена основано на реакциях дегидрирования и дегидратации спирта. Эти реакции идут одновременно при пропускании паров спирта над смесью соответствующих катализаторов.
Бутадиен очищают от непрореагировавшего этилового спирта, многочисленных побочных продуктов и подвергают полимеризации. Для того чтобы заставить молекулу мономера соединиться друг с другом, их необходимо предварительно возбудить, то есть привести их в такое состояние, когда они становятся способными, в результате раскрытия двойных связей, к взаимному присоединению. Это требует затраты определённого количества энергии или участия катализатора.

Читайте также:  Каким вегетативным способом размножается смородина

При каталитической полимеризации катализатор не входит в состав образующегося полимера и не расходуется, а выделяется по окончанию реакции в своём первоначальном виде. В качестве катализатора полимеризации 1,3- бутадиена С. В. Лебедев выбрал металлический натрий, впервые применённый для полимеризации непредельных углеводородов русским химиком А. А. Кракау. Отличительной особенностью процесса полимеризации является то, что при этом молекулы исходного вещества или веществ соединяются между собой с образованием полимера, не выделяя при этом каких-либо других веществ.

Источник

4. 4. 037 Синтетический каучук С. В. Лебедева

4.4.037 Синтетический каучук С.В. Лебедева

Химик-органик; профессор Военно-медицинской академии, Ленинградского технологического, Психоневрологического и Женского педагогического институтов, ЛГУ; академик АН СССР; организатор и руководитель ряда лабораторий (химической переработки нефти, каменного угля, синтетического каучука, высокомолекулярных соединений АН СССР); заведующий химической частью завода «Нефтегаз»; кавалер золотой медали Международной выставки по железнодорожному делу, двух почетных золотых медалей Российской АН, ордена В.И. Ленина; лауреат большой премии И.Д. Толстого Российской АН, премии им. Ф.Э. Дзержинского за исследования в области каталитической гидрогенизации — Сергей Васильевич Лебедев (1874—1934) является основоположником промышленного способа получения синтетического каучука.

С появлением в начале XX в. автомобилей, аэропланов, танков и тракторов на резиновом ходу резко возросла потребность в шинах. Новые отрасли промышленности (в первую очередь, электротехническая) нуждались в электроизоляционных материалах, прорезиненных тканях, конвейерных лентах, приводных ремнях, уплотнителях, резиновых клеях, всевозможных шлангах и рукавах.

Ассортимент товаров широкого потребления пополнился резиновой обувью, одеждой, игрушками, спортивным инвентарем, предметами санитарии и гигиены. Появился спрос на водолазные костюмы и прочую экзотику.

Поначалу резины на эти цели хватало. Сырьем для нее служил натуральный каучук из млечного сока (латекса) бразильской гевеи, произраставшей на плантациях в тропических странах. («Каучу» — сок гевеи, с языка индейцев Амазонки).

Резину получают при вулканизации этого полимера — высокомолекулярного непредельного углеводорода элементарного состава (С5Н8)n. Главная способность каучука заключается в высокой эластичности при комнатных и умеренно низких температурах — метровую пластинку можно растянуть до 9 м без потери свойств.

В довоенной России резиновая промышленность была развита слабо, и отношение властей, да и научного сообщества к работам химиков, занимавшихся невероятно сложной «резиновой» проблемой, также оставляло желать лучшего.

Первая мировая война выявила колоссальную зависимость любой страны от каучука. Стоило Антанте отрезать Германию от импорта каучука, как у подданных кайзера Вильгельма II тут же начались серьезные проблемы с шинами для танков, пушек, машин.

Немецкие химики смогли получить из изопрена первый синтетический метилкаучук, но от него из-за дороговизны и крайне низких эксплуатационных свойств после войны тут же отказались.

Правительство СССР, не желая повторять печальный опыт противника, проявило максимум усилий по созданию резиновой промышленности на основе отечественного каучука. Прорабатывались два варианта получения каучука: натурального — поиск каучуконосов, пригодных для разведения в нашей стране (этой проблемой занимался Н.И. Вавилов); и синтетического, для чего в 1926 г. был объявлен всемирный конкурс на производство искусственного каучука с премиальным фондом 150 000 руб (100 000 — за первое место).

Через 2 года конкурсанты должны были передать в жюри 2 кг дешевого продукта, не уступающего по свойствам природному, описание лабораторного и заводского способов его получения.

С.В. Лебедев занимался синтезом каучука еще в 1900-х гг. параллельно с другими химиками — И.Л. Кондаковым и И.И. Остромысленским. В 1910 г. Лебедев впервые получил из дивинила синтетический бутадиеновый каучук. 19-граммовый образец произвел впечатление на коллег ученого, но никак не на представителей промышленности. «Исследование в области полимеризации двуэтиленовых углеводородов» (1913) Лебедева стало в дальнейшем научной базой промышленного синтеза каучука, а целый цикл работ ученого по полимеризации этиленовых углеводородов лег в основу промышленных методов получения бутилкаучука и полиизобутилена.

Лебедев создал «великолепную семерку» энтузиастов-химиков, и в свободное от работы время и за свой счет занялся невероятно трудоемкой работой. Все приходилось делать самим — закупать подсобные материалы, колоть и таскать с Невы необходимый для опытов лед.

Руководитель группы был одновременно «и исполнителем, и лаборантом, и слесарем, и стеклодувом, и электромонтером». Без опыта и интуиции Лебедева, без его железной уверенности в правильности выбранного пути вряд ли это предприятие увенчалось успехом.

Разработав «одностадийный промышленный способ получения бутадиена из этилового спирта путем совмещенной каталитической реакции дегидрогенизации и дегидратации», ученый успел получить в лаборатории общей химии в Ленинградской военно-медицинской академии к установленному сроку 2 кг синтетического натрий-бутадиенового каучука — «диолифина».

Сырьем для получения каучука вначале была нефть, но вскоре перешли на этиловый спирт, получаемый из картошки. В качестве катализаторов Лебедев взял природные глины, а катализатором полимеризации послужил металлический натрий. Первоначальный 20-процентный выход дивинила на затраченный спирт затем был доведен до 40 %.

Читайте также:  Способы активизации внимания аудитории

Жюри конкурса признало Лебедевский продукт победителем, способ его получения — перспективным и дало добро на его дальнейшую разработку, для чего правительством были отпущены необходимые средства.

Лебедев составил проект Опытного завода, который был построен в Ленинграде в 1930 г. В течение года синтетический каучук был получен в промышленных масштабах (первый блок весом 260 кг), изучены его свойства, найдены активные наполнители, предложены методы и технологии получения из него высокотехничной резины и резинотехнических изделий.

Автомобильные покрышки успешно выдержали серьезное испытание в знаменитом Каракумском пробеге (9400 км по дорогам и бездорожью маршрута Москва — Ташкент — Красноводск — Баку — Москва).

В 1931 г. Сергей Васильевич Лебедев был награжден орденом Ленина за «особо выдающиеся заслуги по разрешению проблемы получения синтетического каучука», а в следующем году избран действительным членом АН СССР.

Совет труда и обороны СССР принял решение о строительстве первых трех заводов синтетического каучука проектной мощностью 10 000 т в год каждый. Так в мире появилась новая промышленность синтетического каучука.

Когда американский изобретатель Т.А. Эдисон, тщетно занимавшийся каучуковой проблемой, узнал об успехе русских, он не поверил и заявил: «Этого нельзя сделать. Я бы сказал даже больше, весь этот отчет является фальшивкой. На основании моего собственного опыта и опыта других стран сейчас нельзя сказать, что получение синтетического каучука вообще когда-либо будет успешным» (В. Азерников).

Тем не менее именно СССР накануне Второй мировой войны занял первое место в мире по производству синтетического каучука.

В Германии каучук был синтезирован в 1936—1937 гг., а в США — в 1942 г.

В 1950-х гг. советские химики вернулись к одному из путей, которые осваивал С.В. Лебедев — к производству каучука из нефтяных газов и продуктов переработки нефти. Это был новый шаг в получении еще более высококачественного искусственного каучука.

Источник

Спирт из этилена

По существу и спирты брожения представляют собой продукты синтеза, но природного. Ведь картофель, различные злаки и древесина — все они получаются в результате фотохимического синтеза в растениях из простых . «веществ, находящихся в воздухе и почве. Этот процесс происходит кругом нас в природе в гигантских размерах, несравнимых с масштабами обычных производств. В зелёных частях растений, под влиянием хлорофилла—катализатора, вырабатываемого самими растениями, непрерывно синтезируется крахмал, сахара и другие вещества из угольного ангидрида и воды воздуха. Почти вся пища человека состоит из продуктов этого синтеза.

Следовательно, когда мы упомянули о синтетическом спирте, мы имели в виду искусственный химический синтез.

Синтетический этиловый спирт — это спирт из газов нефтепереработки. Нефть является третьим, важнейшим видом сырья для производства спирта. При нагревании нефти (это осуществляется на больших нефтеперегонных заводах) из неё последовательно выделяется ряд фракций — бензин, керосин, лигроин и т. д. Эти фракции — смесь лёгких углеводородов. В остатке получается тяжёлый мазут.

В прошлом столетии главным продуктом перегонки нефти служил керосин, использовавшийся для освещения. Любопытно, что такой ценнейший нефтепродукт, как бензин, в то время считался отходом и просто сжигался. В настоящее время бензин — главный вид моторного топлива. Вначале его выделяли из нефти только так называемой прямой гонкой, т. е. перегонкой с целью получения лёгких, светлых фракций. Однако со временем, с целью увеличения выработки бензина, который настоятельно требовали быстро развивавшиеся автомобильная промышленность и авиация, основанные на применении двигателей внутреннего сгорания, нефть стали подвергать специальной переработке. Эта переработка, связанная с применением высоких температур и давлений, называется пиролизом или крекингом, в зависимости от условий проведения процесса. Сущность таких процессов будет разобрана ниже, в главе о получении бутадиена из нефти.

При пиролизе и крекинге нефти за счёт расщепления сложных молекул углеводородов, образующих нефть, получаются в большом количестве газообразные углеводороды как предельные — метан СН4, этан С2Н6, пропан С3Н8, так и непредельные — этилен С2Н4, пропилен С3Н6 и др.

Газы нефтепереработки представляют ценнейшее химическое сырьё. Однако до последнего времени их использовали мало. Чаще всего эти газы просто сжигали, устраивая «факел» вблизи нефтеперегонного завода, или выбрасывали без всякой пользы в атмосферу. Лишь в последние годы найдены способы улавливания газов нефтепереработки, их разделения и разнообразной химической переработки.

Одним из наиболее ценных газов нефтепереработки является лёгкий горючий газ этилен СH2=СH2, который содержится в газах пиролиза до 21% по весу. Он имеет двойную связь. Это — простейшее непредельное соединение. Благодаря двойной связи этилен легко вступаете соединения с другими веществами и может полимеризоваться, давая твёрдый политэн. Этилен очень удобен для синтеза и применяется в промышленности в больших количествах для получения различных веществ.

Свойства этилена прекрасно знал. Александр Михайлович Бутлеров. В 1873 г. он произвёл интересный и важный по своим практическим последствиям опыт. Бутлеров пропускал газообразный этилен через серную кислоту. Этилен, взаимодействуя с кислотой, давал этилсерную кислоту:

Обрабатывая получившийся полупродукт водой (гидролизуя его, как сказал бы химик), учёный получил впервые синтетический этиловый спирт:

Так восемьдесят лет назад в Петербурге было сделано замечательное открытие, честь которого принадлежит русскому химику. Было впервые доказано, что столь важный для народного хозяйства продукт, как спирт, можно получать без брожения, чисто химическим путём. В наше время, когда крекинг и пиролиз нефти получили во многих странах большое развитие, реакция Бутлерова осуществлена в промышленном масштабе. Из этилена газов нефтепереработки получают сотни тысяч тонн спирта. Это — спирт из нефти. Для получения его не требуется затраты пищевого сырья и поэтому производство такого спирта имеет неограниченные перспективы развития.

Читайте также:  Различные способы решения алгоритма

Мысль учёных не остановилась на этом открытии. Производство спирта из этилена с помощью серной кислоты («сернокислотный метод» получения спирта) идёт в две стадии. Это двухступенчатый процесс, а химики всегда стремятся сократить число стадий: чем их меньше — тем больше выход целевого продукта. Реакции, которые мы только что прочитали, означают лишь главные направления процесса, в действительности образуется ряд побочных продуктов. Этилен заставляют взаимодействовать с высококонцентрированной (95—98%) серной кислотой при температуре 60—80° и небольшом избыточном давлении газа. Для получения 1 г 100-процентного этилового спирта нужно затратить около 0,7 т этилена Как видно из уравнения реакции, при получении спирта из этилена через этилсерную кислоту вновь образуется серная кислота, но уже разбавленная (40—60%), так как для гидролиза в процесс вводится вода.

Большой расход серной кислоты и образование слабой кислоты являются недостатками сернокислотного метода получения этилового спирта.

Очень заманчива мысль о получении этилового спирта прямо непосредственно из этилена, в одну стадию. Ведь на бумаге это самая простая реакция:

В действительности получить спирт в одну стадию не так-то просто. Химики призывают здесь на помощь всех своих верных помощников: катализатор, большое давление, высокую температуру. Лишь в этом случае этилен реагирует с водой с хорошим выходом.

В самые последние годы такой процесс осуществлён в производственных условиях. Он носит название прямой гидратации этилена, так как суть его состоит в непосредственном присоединении воды к этилену. Как и гидролиз этилсерной кислоты, реакция прямой гидратации этилена обратима. Процесс может протекать, в зависимости от условий, в том или ином направлении. При определённых условиях наступает момент химического равновесия: в единицу времени образуется столько молекул этилового спирта, сколько их распадается на этилен и воду.

В процесс прямой гидратации не нужно вводить больших количеств серной кислоты. Это является крупным преимуществом для производства.

Так на заводах получают спирт из этилена.

Это также спирт из непищевого сырья.

В ближайшие годы советская промышленность синтетического каучука целиком перейдёт на потребление для производственных нужд спирта из непищевого сырья — древесины и газов нефтепереработки. Пищевое сырьё, затрачиваемое сейчас для этой цели, пойдёт по прямому назначению.

На рисунке 9 наглядно представлен расход различного сырья для получения 1 т этилового спирта. Мы ознакомились со всеми промышленными методами производства этилового спирта, принятыми в настоящее время. Пойдём дальше: посмотрим, как из спирта получают бутадиен по методу С. В. Лебедева.

Рис. 9. Такое количество картофеля, древесины или этилена необходимо для получения 1 т этилового спирта.

Этиловый спирт-сырец, поступающий со спиртовых заводов, направляется на спиртовой склад для составления «шихты», т. е. смеси, идущей на химическое разложение («контактирование»). Для составления шихты берут в строго определённом соотношении свежий спирт-сырец и оборотный, или спирт-регенерат (спирт, не разложившийся при контактировании). Эту смесь центробежный насос непрерывно подаёт на разложение в контактный цех. Образующиеся здесь контактные газы, содержащие нужный нам бутадиен, поступают в цех конденсации. В нём происходит частичная конденсация (сжижение) контактного газа. Составные части шихты, имеющие высокие температуры кипения, превращаются в жидкость, а низкокипящие, в том числе и бутадиен, кипящий при 4°,5 °С, идут дальше в виде паров. Смысл этой технологической операции понятен: отделить бутадиен от тяжёлых примесей, в первую очередь от воды и этилового (неразложившегося) спирта (рис. 10).


Рис. 10. Общая схема производства каучука из спирта по методу С. В. Лебедева.

Неконденсирующийся газ поступает на абсорбцию, т. е. поглощение жидкостью. В высоких аппаратах — скрубберах бутадиен и некоторые его примеси улавливаются стекающим вниз жидким спиртом. Насыщенный абсорбент (спирт) поступает на отгонку, на колонны, обогреваемые паром. Легко кипящий бутадиен отгоняется от абсорбента, конденсируется и в виде бутадиена-сырца поступает на отмывку, заключающуюся в том, что сопутствующий бутадиену ацетальдегид, мешающий полимеризации, отмывается водой и таким образом отделяется от бутадиена. Отмытый бутадиен-сырец подвергается ректификации (очистке путём многократной перегонки), после чего, в виде крепкого чистого бутадиена-ректификата направляется на полимеризацию — превращение в полимер. Отмывка и ректификация составляют в совокупности процесс очистки бутадиена. Полимер подвергается обработке, давая товарный натрий-бутадиеновый каучук.

Такова в самых общих чертах схема получения синтетического каучука по методу С. В. Лебедева. Мы умышленно подчеркнули слова: разложение — конденсация — абсорбция — отгонка — отмывка — ректификация — полимеризация — обработка. Именно эта цепь основных процессов и приводит на заводах к получению синтетического каучука, отправляемого затем на резиновые заводы для переработки в изделия. Совершим экскурсию по заводу синтетического каучука. Когда подходишь к такому заводу, поражает тишина: хорошо налаженные химические заводы работают почти бесшумно.

В этом отношении они сильно отличаются от механических или металлургических заводов, где большинство рабочих процессов сопровождается шумом и лязгом. Издали завод СК (так обычно в практике сокращённо называют синтетический каучук) представляет собой большое промышленное предприятие со многими зданиями и высокими аппаратами, стоящими вне зданий.

Источник

Оцените статью
Разные способы