Специальные способы литья центробежное литье

Центробежное литье. Суть способа. Основные операции и область использования

Принцип центробежного литья заключается в том, что заполнение фор-мы расплавом и формирование отливки происходят при вращении формы вокруг горизонтальной, вертикальной или наклонной оси, либо при ее вращении по сложной траектории. Этим достигается дополнительное воздействие на расплав и затвердевающую отливку поля центробежных сил. Процесс реализуется на специальных центробежных машинах и столах.

Чаше используют два варианта способа, в которых расплав заливается в форму с горизонтальной или вертикальной осью вращения. В первом варианте получают отливки – тела вращения малой и большой протяженности, во втором – тела вращения малой протяженности и фасонные отливки.

Наиболее распространенным является способ литья пустотелых цилиндрических отливок в металлические формы с горизонтальной осью вращения. По этому способу (рисунок 6.1) отливка 4 формируется в поле центробежных сил со свободной цилиндрической поверхностью, а формообразующей поверхностью служит внутренняя поверхность изложницы. Расплав 1 из ковша 3 заливают во вращающуюся форму 5 через заливочный желоб 2. Расплав растекается по внутренней поверхности формы, образуя под действием поля центробежных сил пустотелый цилиндр. После затвердевания металла и остановки формы отливку 4 извлекают. Данный способ характеризуется наиболее высоким технологическим выходом годного (ТВГ = 100%), так как отсутствует расход металла на литниковую систему.

Рисунок 6.1 – Схема получения отливки при вращении формы вокруг горизонтальной оси: 1 – расплав; 2 – заливочный желоб; 3 – ковш; 4 – отливка; 5 – форма

При получении отливок со свободной параболической поверхностью при вращении формы вокруг вертикальной оси (рисунок 6.2) расплав из ковша 1 заливают в форму 2, закрепленную на шпинделе 3, приводимом во вращение электродвигателем 4. Расплав 5 под действием центробежных и гравитационных сил распределяется по стенкам формы и затвердевает, после чего вращение формы прекращают и извлекают из нее затвердевшую отливку 6.

Рисунок 6.2 – Схема получения отливок при вращении формы вокруг вертикальной оси: 1 – ковш; 2 – форма; 3 – шпиндель; 4 – электродвигатель; 5 – расплав; 6 – отливка

Отливки с внутренней поверхностью сложной конфигурации получают с использованием стержней (рисунок 6.3, а) в формах с вертикальной осью вращения. Так отливают, например, венцы зубчатых колес. Расплав из ковша через заливочное отверстие и стояк 1 поступает в центральную полость формы 2, выполненную стержнями 3 и 4, а затем под действием центробежных сил через щелевые питатели – в рабочую полость формы. При этом избыток металла в центральной полости формы 5 выполняет роль прибыли, обеспечивая питание отливки при затвердевании.

Мелкие фасонные отливки можно получать центробежным литьем в песчаные формы (рисунок 6.3, б). Части формы 1 и 2 устанавливают на центробежный стол и крепят на нем. При необходимости используют стержни 4. Рабочие полости 3 должны располагаться симметрично относительно оси вращения для обеспечения балансировки формы. Расплав заливают через центральный стояк, из которого по радиальным каналам он попадает в полости формы. Технологический выход годного при таком способе литья приближается к выходу годного при литье в песчаные формы. При центробежном литье можно использовать песчаные, металлические, оболочковые и объемные керамические, а также комбинированные формы.

Рисунок 6.3 – Схема получения фасонных отливок: а – венец шестерни: 1 – стояк; 2 – центральная полость формы; 3 и 4 – стержни; 5 – прибыль; б – мелкие фасонные отливки: 1 – нижняя полуформа; 2 – верхняя полуформа; 3 – рабочая поверхность формы; 4 – стержень

Особенности формирования отливки

Главная особенность формирования отливок при центробежном способе литья заключается в том, что заполнение формы металлом и затвердевание отливки происходят в поле действия центробежных сил, во много раз превосходящих силу тяжести.

В этих условиях если твердые частицы соприкасаются со стенкой формы, они оказываются прижатыми к стенке и уже не всплывают. На этом основано использование сыпучих покрытий для металлических форм при центробежном литье.

Действие центробежных сил необходимо учитывать и при конструировании систем шлакозадержания и питания отливки, например, при получении стальных фасонных отливок центробежной заливкой в песчаные формы.

Особенности охлаждения и затвердевания отливок в поле центробежных сил

При изготовлении отливок со свободной поверхностью расплав охлаждается в изложнице неравномерно по объему. Часть теплоты отводится от расплава через стенку изложницы и ее крышку, а часть – конвекцией и излучением со стороны свободной поверхности. Количество теплоты, отводимое в воздушное пространство от свободной поверхности отливки, значительно. Воздух, находящийся в полости отливки, вовлечен в процесс вращения и находится в постоянном движении. Вдоль оси вращения на смену нагретому воздуху поступают порции холодного. Более интенсивная циркуляция воздуха наблюдается в случае вращения формы с расплавом вокруг вертикальной оси вследствие естественного подъема горячего воздуха вверх.

Подобная неравномерность охлаждения, особенно толстостенных отливок, приводит к возникновению конвективных потоков в расплаве: охлажденный и более плотный расплав перемещается от свободной поверхности внутрь затвердевающей отливки, а горячий и менее плотный – наружу. Поэтому конвективные потоки в расплаве циркулируют в радиальном направлении (рисунок 6.4, а). В условиях центробежного литья это явление наблюдается даже при небольшом различии температур и плотностей металла, так как действующие в этой системе силы возрастают пропорционально величине гравитационного коэффициента. Это способствует направленному затвердеванию отливки в радиальном направлении, которое выражено тем сильнее, чем больше угловая скорость вращения формы.

При направленном затвердевании от стенок изложницы фронт растущих в радиальном направлении кристаллов находится под значительным избыточным давлением расплава, обусловленным действием поля центробежных сил. Вследствие этого кристаллы растут в направлении поступающего расплава (рисунок 6.4, б), поэтому они несколько наклонены в сторону по направлению вращения. Давление, развиваемое при вращении расплава, способствует прониканию его в межкристаллитные пространства, что улучшает питание затвердевающей отливки и увеличивает ее плотность. Свободная поверхность расплава затвердевает в последнюю очередь и при горизонтальной оси его вращения форма свободной поверхности остается геометрически правильной – цилиндрической.

Рисунок 6.4 – Схема возникновения конвективных потоков (показаны фигурными стрелками) во вращающемся затвердевающем расплаве (а) и схема кристаллического строения отливки (б): l0 – глубина расположения усадочной пористости; стрелкой показано направление вращения изложницы.

Инородные частицы (газы, шлак и т.д.), плотность которых меньше плотности расплава, при центробежном литье с большой скоростью всплывают на свободную поверхность расплава. Это приводит к необходимости назначать большие припуски на обработку свободных поверхностей отливок, что является недостатком данного способа литья.

Читайте также:  Добавить способы оплаты инстаграм

Таким образом, при направленном затвердевании можно получить отливки с плотным строением тела, без усадочных дефектов и инородных включений. Однако центробежные силы способствуют направленному затвердеванию только в тех случаях, если выделяющиеся на свободной поверхности кристаллы твердой фазы имеют большую плотность, чем плотность остального расплава.

Для большинства литейных сплавов это условие соблюдается. Исключение составляют два случая:

  • когда сплав затвердевает с увеличением объема, например, серый чугун;
  • когда выделяющиеся из жидкого металла кристаллы обогащены компонентами сплава, имеющими меньшую плотность, чем оставшийся расплав. Такое явление наблюдается, например, при затвердевании заэвтектических силуминов. В этом случае при содержании кремния в силуминах более 11,7 %, первичные кристаллы обогащены кремнием, плотность которого меньше плотности алюминия. Если эти более легкие кристаллы зародились и выросли на свободной поверхности, то они там и останутся. Если кристаллы зародились в переохлажденном расплаве, за счет разности плотностей расплава и твердой фазы они всплывают. В результате отливка затвердевает от стенок изложницы и со стороны свободной поверхности, и к концу затвердевания вследствие недостатка питания внутри отливки образуются усадочные поры. В этом случае, чем быстрее вращается форма, тем интенсивнее выносятся кристаллы на свободную поверхность и тем глубже располагается усадочная пористость.

Усадочная пористость под свободной поверхностью наблюдается также при изготовлении толстостенных отливок (рисунок 6.4, б). В тонкостенных отливках большой протяженности глубина расположения зоны усадочной пористости l меньше. Это объясняется соотношением скоростей охлаждения со стороны наружной и внутренней поверхностей отливки. Чем меньше скорость охлаждения внутренней поверхности отливки и больше скорость охлаждения ее со стороны наружной поверхности – тем меньше глубина l.

Скоростью охлаждения отливки можно управлять. Так, с наружной стороны это достигается путем изменения толщины слоя или теплофизических свойств огнеупорного покрытия, изменением скорости охлаждения формы. Со стороны внутренней поверхности с этой целью можно использовать сыпучие огнеупорные материалы или экзотермические смеси.

Таким образом, особенности формирования обливки при центробежном литье сопряжены как с большими преимуществами, так и с недостатками. К преимуществами этого способа можно отнести: возможность улучшения заполняемости форм расплавом под действием давления, развиваемого центробежными силами; повышение плотности отливок вследствие уменьшения количества усадочных пор, раковин, газовых, шлаковых и неметаллических включений; уменьшение расхода металла и повышение выхода годного, благодаря отсутствию литниковой системы при изготовлении отливок типа труб, колец, втулок или уменьшению массы литников при изготовлений фасонных отливок; исключение затрат на стержни при изготовлении отливок типа втулок и труб.

Недостатками способа являются: трудности получения отливок из сплавов, склонных к ликвации; загрязнение свободной поверхности отливок неметаллическими включениями; неточность размеров и необходимость повышенных припусков на обработку свободных поверхностей отливок, вызванная скоплением неметаллических включений в материале отливки вблизи этой поверхности и отклонениями точности дозы расплава, заливаемого в форму.

Наивысшие технико-экономические показатели центробежного способа литья достигаются при получении пустотелых цилиндрических отливок с различными размерами и массой (длиной до нескольких метров и массой до нескольких тонн): труб разного назначения из чугуна, стали, цветных и специальных сплавов; втулок и гильз для стационарных и транспортных дизелей; колец подшипников качения и др. Большое распространение получило центробежное литье для изготовления биметаллических изделий, изделий из сплавов с низкой жидкотекучестью и высоким поверхностным натяжением, при необходимости получения тонкостенных отливок со сложной геометрией и микрорельефом поверхности. К ним относятся, например, турбинные диски с лопатками, отливки художественного и ювелирного назначения.

Источник

Технология центробежного литья, его применение

Что такое центробежное литье

Металлические формы для центробежного литья называют кокилями, или изложницами. Центробежный способ применяют также для заливки в разовые формы титановых, бронзовых, чугунных, стальных и других сплавов.
При данном способе литья сплав заливают в подогретую вращающуюся форму (рис. 1). Он начинает вращаться под действием центробежных сил и затвердевает. Еще горячую отливку извлекают из формы, форму охлаждают до оптимальной температуры (200. . .300 °С), на ее рабочую поверхность наносят теплоизоляционное покрытие, и процесс повторяется.

Рис. 1. Схемы центробежного литья

Возможны три схемы центробежного литья. При любой схеме ось вращения формы может быть горизонтальной, вертикальной или наклонной.

Наиболее широко распространена схема I. По ней получают полые цилиндрические отливки без стержней. Машины с горизонтальной осью вращения (рис. 1, а) применяют для отливки длинных тел вращения: длина в 3 раза больше, чем диаметр. Свободная поверхность отливки представляет собой цилиндр. Свободной поверхностью отливки называется поверхность, которая не контактирует со стенками литейной формы, а только с воздухом.

На машинах с вертикальной осью вращения (рис. 1, б) получают короткие тела вращения из-за разностенности по высоте отливки. Свободная поверхность — параболоид. Разностенность тем больше, чем выше отливка.

Схемы II и III, при реализации которых нет свободной поверхности, применяют реже, в них центробежные силы используют для повышения плотности отливок или улучшения заполнения тонкостенных отливок.

Центробежный способ литья по схеме I позволяет использовать вместо антипригарных красок для покрытия стенок формы сыпучие сухие без связующих огнеупорные теплоизоляционные покрытия форм. Поэтому перед заливкой во вращающуюся форму вводят песок, который центробежными силами распределяется по рабочей поверхности равномерным слоем.

Скорость вращения формы выбирают из условий получения отливки правильной геометрической формы и создания центробежных сил, необходимых для оптимального процесса затвердевания отливки. Наименьшим будет число оборотов, при котором нет дождевания — отрыва капель металла от потока и их падения, т. е. центробежная сила на свободной поверхности несколько больше силы тяжести.

Рис. 2. Схема получения чугунной трубы центробежным способом: а — исходное положение; б — заливка чугуна; в — окончание заливки; г — извлечение отливки и возвращение машины в исходное положение.

На рис. 2 показан процесс отливки труб. В исходном положении (рис. 2, а) заливочный лоток 4 введен в самую дальнюю часть изложницы 2, которая установлена на роликах внутри защитного кожуха 3 и приводится во вращение от привода 1. После того как металл из раздаточного ковша 5 по лотку 4 заполнит самую низко расположенную часть изложницы 2 (рис. 2, б), она с помощью тележки вместе с приводом смещается влево и металл попадает в другую ее часть. Так продолжается до полного заполнения (рис. 2, в, г).

Центробежным способом изготовляют крупные отливки из легированных сталей для прокатки труб, втулки и венцы из антифрикционных сплавов, мелющие тела из белого чугуна, гильзы (автомобильных и тракторных двигателей) из легированного чугуна, напорные и сливные чугунные трубы, гребные винты (по схеме II, рис. 1), детали из жаропрочных и титановых сплавов.

Читайте также:  Вакцинация по способу пастера

Рис. 3. Вертикальная машина центробежного литья ЦБМ-05

Производство отливок из чугуна

3.4 Центробежное литье

Центробежное литьё — перспективный способ производства фасонных изделий с формой тел вращения преимущественно при крупносерийном их изготовлении. Этим способом литья получают водопроводные и канализационные трубы, заготовки гильз цилиндров двигателей внутреннего сгорания, облицовки судовых валов, корпуса сушильных цилиндров бумагоделательных машин, труба для энергетического машиностроения и другие изделия ответственного назначения.

Центробежное литьё по сравнению с литьём в разовые формы имеет следующие преимущества. Производительность труда при работе на центробежной машине увеличивается в несколько раз, отпадает потребность в площадях для формовки, смесях, связующих материалах для стержней, а также в оборудовании для сушки форм и стержней.

Процесс центробежного литья может быть полностью механизирован или автоматизирован, что уменьшает потери от брака и сокращает потребность в высококвалифицированной рабочей силе.

Центробежные отливки отличаются повышенными механическими свойствами литого металла. При этом значительные технико-экономические преимущества центробежного литья достигаются вследствие экономии металла, энергоносителей и продолжительности производственного цикла.

Однако, центробежное литьё имеет и недостатки: необходимы специальные машины; формы должны быть повышенной прочности и герметичности, необходимо строгое дозирование металла для получения нужного размера внутреннего отверстия отливки; усиливается ликвация компонентов сплавов по плотности. Сама отливка может иметь только форму тела вращения.

Особенность центробежного литья состоит в том, что металл заливают во вращающуюся форму, чаще всего металлическую. При заливке и кристаллизации металл испытывает действие центробежных сил.

Ось вращения формы может быть горизонтальной, вертикальной, наклонной или перемещающейся в пространстве в процессе получения отливки.

Металл, свободно заливаемый во вращающуюся вокруг горизонтальной оси форму, растекается по ней под действием кинетической энергии струи и вовлекается во вращательное движение за счёт сил трения металла о форму. Однако, такая скорость частиц металла при его вращении вокруг горизонтальной оси не может быть постоянной из-за пульсации результирующей силы в течение оборота формы, так как она складывается из постоянной по величине и направлению силы тяжести и постоянной по величине, но меняющейся по направлению центробежной силы. Это приводит к тому, что свободная поверхность металла, залитого в форму, смещается к низу от оси вращения (рис. 3.10).

– Гидростатические силы, действующие на металл при вращении формы относительно горизонтальной оси: 1-расплав; 2-форма; Fр – равнодействующая сил центробежной (Fц) и тяжести (Fg)

В длинных формах кинетической энергии струи заливаемого металла недостаточно для равномерного растекания его вдоль формы, поэтому ось вращения таких форм делают наклонной, либо перемещают заливочный желоб вдоль формы во время заливки расплава, либо передвигают форму вдоль неподвижного желоба. Частота вращения формы при центробежном литье — один из основных технологических параметров, определяющих качество отливки. От частоты вращения формы зависят плотность отливки, ее механическая прочность, однородность состава по радиальному сечению, степень удаления шлаковых включений от наружной поверхности отливки к внутренней и правильность формы свободной поверхности отливки.

Определение скорости вращения формы является одним из основных вопросов при разработке технологии литья и конструировании центробежных машин. Чрезмерное увеличение частоты вращения нежелательно из-за возможности образования в отливках продольных трещин на наружной поверхности и повышенной ликвации элементов сплава.

Кроме того, машины с большой частотой вращения конструктивно более сложны, менее удобны и менее безопасны в работе. Поэтому, при технологической разработке процесса и конструирования машин выбирают не наибольшую, а наименьшую частоту вращения, которая обеспечивала бы надлежащее качество отливок. Нижний предел частоты вращения при литье полых заготовок с горизонтальной осью вращения определяется следующим условием: заливаемый металл во время первого оборота вокруг оси должен получить ускорение, превышающее g. Невыполнение этого условия приводит к «дождеванию» металла при заливке в форму. Наиболее известным способом расчёта скорости вращения формы является расчёт по коэффициенту гравитации.

Коэффициентом гравитации центробежного литья называют число, которое показывает, во сколько раз центробежная сила, действующая на заливаемый металл, больше силы тяжести. При расчётах необходимо различать заливку в форму с горизонтальной и вертикальной осями вращения.

При расчёте скорости вращения формы с горизонтальной осью вращения по коэффициенту гравитации учитывают, что на частицы расплава действует центробежная сила и сила тяжести.

Коэффициент гравитации К зависит от вида формы и заливаемого сплава. Для песчаной формы с горизонтальной осью вращения принимают К=75, для металлической формы К=80, для сплавов с узким интервалом затвердевания К=90…100.

При вертикальной оси вращения свободно заливаемый в форму металл постепенно увлекается ею во вращательное движение. Через некоторое время угловые скорости вращения отдельных слоев металла и самой формы выравниваются, и жидкость приходит в состояние относительного покоя. Пульсации результирующей силы за период оборота формы в этом случае не происходит, так как направление центробежной силы при вращении относительно вертикальной оси не изменяется.

Температура нагрева изложницы перед заливкой металлом, футеровка изложницы и способ заливки металла в форму оказывают влияние на формирование центробежных отливок и их качество. Предварительный подогрев изложницы снижает тепловой удар при заливке металла, способствует лучшему распределению металла по диаметру и длине, повышению качества наружной поверхности отливок и снижению брака по отбелу при литье чугуна.

Огнеупорное покрытие уменьшает скорость и степень нагрева изложниц при заливке их металлом, а также снижает скорость охлаждения отливок, что предотвращает образование трещин при литье стали и отбела при литье чугуна.

Для форм наиболее распространены огнеупорные покрытия из сыпучих материалов (обычно из сухого кварцевого песка). Благодаря большой частоте вращения изложницы такое покрытие наносится ровным слоем на ее стенку, удерживается на ней и не размывается струей горячего металла. Но значительный пригар песка и формирование некачественной наружной поверхности отливок обусловливает необходимость разработки более технологичных огнеупорных покрытий.

Перспективно использовать в этих целях жидкие огнеупорные покрытия на основе диатомита, например, огнеупорную краску, содержащую, % (мас. доля): диатомита термообработанного 55-70; бентонита 1,0-2,5; коллоидального раствора золя кремниевой кислоты с содержанием 20% Si02 3,0-9,0; воды (до плотности краски 1200-1400 кг/м3) – остальное, так как это обеспечивает получение качественных однослойных и биметаллических отливок из чугуна и стали.

Скорость заливки металла влияет на качество наружной поверхности отливки и заполнения формы и зависит от критической скорости вращения формы. Подачу металла в начале заливки рекомендуется ускорить, чтобы металл быстрее распределился по всей поверхности формы. В этом случае неслитины и спаи на поверхности отливки не образуются. В дальнейшем скорость наращивания толщины слоя снижают в целях создания благоприятных условий для направленного затвердевания, уменьшения гидравлического давления на затвердевшую оболочку и вероятности развития ликвации и т.д. Регулирование скорости заливки удобнее выполнять при заливке металла через носок ковша и гораздо сложнее — через стопор или чашу с отверстием.

Читайте также:  Нашатырный спирт способы применение

При разработке технологического процесса центробежного литья необходимо учитывать плотности первично выпадающих фаз в интервале кристаллизации и остающегося маточного раствора. В тех случаях, когда плотность первично выпадающей фазы меньше плотности жидкости, необходимо обеспечить минимальные скорость литья, температуру металла и формы для обеспечения направленной кристаллизации.

Водопроводные и канализационные трубы из серого чугуна являются одним из наиболее массовых видов продукции, изготовляемых центробежным литьем. Для труб характерны большая длина и сравнительно малая толщина стенки. Канализационные трубы изготовляют длиной 2 м и диаметром 50 -150 мм при толщине стенок 4-5 м; водопроводные трубы — длиной 2 — 5 м, диаметром 50-1000 мм и толщиной стенок 7,5 — 30 мм. Литые трубы не обрабатывают резанием. В технических условиях на их приемку регламентируют массу труб, их разностенность (продольная и радиальная). Для водопроводных труб, кроме того, обязательным является испытание на герметичность. Из механических свойств определяют твердость (по Брюнеллю) и так называемый модуль кольцевой прочности R.

Центробежное литьё напорных труб обеспечивает их плотную структуру и отсутствие разностенности. Этот способ литья максимально экономичен, поскольку для образования внутренней поверхности не используются стержни, а массовое производство продукции оправдывает применение дорогих машин и установок. Как правило, водопроводные и канализационные трубы получают в металлических, интенсивно охлаждаемых подвижных формах.

Недостатки процесса — значительная стоимость металлических форм при малой их стойкости, образования в отливках поверхностного отбела и больших внутренних напряжений, что заставляет подвергать трубы высокотемпературному отжигу, что удорожает стоимость продукции.

В табл. 3.2 приведены составы чугунов для центробежного литья труб; а в табл. 3.3 — характеристики напорных труб при различных способах производства (ГОСТ 9583-75), свидетельствующие о преимуществах центробежного литья по сравнению с другими методами.

Перспективным является применение для напорных труб чугуна с шаровидным графитом (высокопрочного). Повышенная прочность и пластичность этого чугуна, хорошая свариваемость открывают возможность экономить металл за счёт уменьшения толщины стенок труб и сохранения высокой коррозионной стойкости по сравнению со стальными трубопроводами.

– Составы чугунов для труб, отливаемых центробежным способом

– Характеристики чугунных напорных труб

3.4 Центробежное литье

Преимущества и недостатки центробежного литья

С помощью центробежного литья получить отливку, имеющую геометрически правильную свободную поверхность, можно только в том случае, если частота вращения является строго определенной (она определяется таким показателем, как гравитационный коэффициент). Если частота вращения отливки оказывается недостаточной, то вследствие усадки, как при вертикальном, так и при горизонтальном положении оси неизбежно возникают искажения.

Таким образом, можно констатировать, что одним из преимуществ центробежного литья является то, что оно позволяет существенно улучшить показатель заполняемости формы расплавом, поскольку на него действует повышенное давление, возникающее под воздействием центробежных сил. Кроме того, в отливках образуется меньше раковин, пор, разнообразных включений, существенно возрастает их плотность.

Необходимо также отметить, что достоинством этого метода литья является также уменьшение расхода металла и повышение такого показателя, как выход годного, по причине отсутствия литниковой системы. Помимо этого, при центробежном литье деталей и заготовок, имеющих форму труб и втулок, не нужно нести затраты на технологические стержни.

Что касается недостатков, то они у центробежного литья тоже есть. К таковым относится трудность изготовления отливок из тех сплавов, что склонны к ликвации; неточность размеров полости отливок, имеющих свободные поверхности; повышенная загрязненность поверхностей отливок ликватами и неметаллическими включениями (из-за этого приходится существенно повышать припуски на их механическую обработку).

Центробежное литье с горизонтальной осью вращения

Это способ является наиболее широко распространенным методом центробежного литья. Он состоит в том, что формирование отливки со свободной поверхностью происходит в поле центробежных сил. При этом внутренняя поверхность изложницы играет роль формообразующей поверхности. Заливка в форму расплава из ковша производится через специальный заливочный желоб. В процессе производства происходит растекание расплава по внутренней поверхности формы, и он под воздействием центробежных сил образует пустотелый цилиндр. После того, как металл или сплав затвердеет, форма останавливается, и готовое изделие из нее извлекается.

Температуры плавления

Температура плавления бронзы напрямую зависит от наполняемости химическими элементами сплава. Ведь в качестве легирующих компонентов могут выступать тугоплавкие элементы. Так, максимальная температура для разлива бронзы составляет 1350 °С.

Маркировка легирующих элементов, добавляемых в сплавы меди:

  • алюминий (А);
  • бериллий (Б);
  • железо (Ж);
  • кремний (К);
  • марганец (Мц);
  • никель (Н);
  • свинец (С);
  • селен (О);
  • титан (Т);
  • цинк (Ц).

Для деления бронзовых сплавов пользуются двумя определениями – это оловянистые и безоловянистые бронзы. Температура плавления пригодного для литья, в зависимости от ее химического состава приведена в таблице.

Сплав, обозначение Температура для литья, °С
БрОФ4-0,25 1300
БрОЦ4-3 1250
БрОЦС4-4-4 1200
БрАЖ9-4 1200
БрА9Мц2Л 1150
БрА10Ж8Л 1190
БрА11Ж6Н6 1185
БрАЖС7-1,5-1,5 1150
БрС3О 975
БрА5 1200
БрКН1-3 1050
БрБНТ1,7 1050
БрАМц10-2 1150
БрКМц3-1 1150
БрМц5 1150
БрБ2 1100
БрСН60-2,5 1100

Это далеко не полный перечень литейных бронзовых сплавов.

Если плавка бронзы производится в домашних условиях, то особое внимание следует обращать на температуру плавления сплава. Оловянистым бронзам не требуется преодолевать тысячеградусный порог. Им достаточно 900°С — 950 °С. Безоловянистым сплавам уже требуется 950 °С — 1100 °С.

Детали, получаемые из бронзы методом центробежного литься

При выплавке бронзовых деталей стоит учитывать их высокую вязкость. Поэтому для качественного литья нагревать их следует выше температуры плавления примерно на 100 градусов. Бронзы обладают минимальной усадкой, которая не превышает 1,5%. Данная характеристика является преимуществом перед латунями и позволяет получать фасонные отливки.

Для сравнения можно посмотреть на температуру плавления латуней. Выделяются две категории латуней – это двухкомпонентные и многокомпонентные латуни. В состав двух компонентных сплавов кроме меди входит цинк. Его количество влияет на температуру плавления, которая находится в диапазоне 880°С — 965°С.

Для много компонентных температурные режимы повышаются до 895 °С — 1070 °С из-за ввода легирующих компонентов с высокой температурой плавления.

Источник

Оцените статью
Разные способы