Современные способы восстановления нанесением покрытий

Содержание
  1. Лекция № 5. Методы и способы восстановления изношенных деталей, повышения их прочности и служебных характеристик.
  2. Способы восстановления деталей
  3. Виды способов восстановления изношенных деталей
  4. Слесарно-механический способ восстановления
  5. Восстановление способом наплавки и сваркой
  6. Виды наплавки цилиндрических поверхностей
  7. Пластическое деформирование восстанавливаемых деталей
  8. Электрохимические способы реставрации деталей
  9. Покрытие неметаллами
  10. Пайка изношенных деталей
  11. Способы восстановления деталей
  12. Классификация способов восстановления деталей.
  13. Нанесением синтетических материалов.
  14. Пайкой.
  15. Восстановление деталей слесарно-механической обработкой. Обработка деталей под ремонтный размер.
  16. Постановка дополнительной ремонтной детали.
  17. Восстановление деталей способом пластического деформирования.
  18. Восстановление деталей сваркой и наплавкой.
  19. Способы сварки и наплавки.

Лекция № 5. Методы и способы восстановления изношенных деталей, повышения их прочности и служебных характеристик.

Большое количество деталей машин и механизмов выходит из строя в процессе эксплуатации вследствие истирания, удар­ных нагрузок, эрозии и т. д. Современная техника располагает различными методами восстановления и упрочнения деталей для повышения срока их службы.

Восстановление изношенных деталей – сложный организационно-технологический процесс, при котором, в отличие от производства новых деталей в качестве заготовки используют изношенную, но уже сформированную деталь. В этом случае затраты на выполнение таких операций, как литье, ковка, штамповка и т.п., отсутствуют. В то же время при восстановлении изношенных деталей появляется ряд дополнительных операций: мойка, разборка, дефектация, комплектация, затраты на которые следует учитывать при выборе способа восстановления.

Изношенные детали восстанавливают следующими способами:

а) сварка дуговая ручная и автоматическая под флюсом и в углекислом газе; сваркой восстанавливают станины и корпусные детали;

б) наплавка — процесс увеличения размеров изношенных деталей электродуговым способом с последующей обработкой детали на заданные размеры; наплавку используют для восстановления валов, червячных роторов, втулок и т.п.;

в) металлизация — процесс нанесения расплавленного металла с помощью сжатого воздуха; такое напыление осуществляется послойно до 10 мм;

г) электрохимическое покрытие — это процессы хромирования, никелирования, цинкования до 3 мм;

д) пластические деформации — правка, раздача, обжатие и т.п.

Правка применяется для устранения изгиба, коробления и т.п. Обжатие и раздача применяются для изменения размеров деталей (втулок, пальцев).

Электродуговая металлизация. Этот способ нанесения по­крытий очень распространен. Преимуществами электродуговой металлизации являются высокая производительность нанесения покрытий, получение покрытий в несколько миллиметров, высо­кая износостойкость (в 1,5-2 раза выше новой детали), простота и технологичность процесса, возможность нанесения покрытия на одну поверхность различных наплавочных материалов. Обла­стью рационального применения электродуговой металлизации является антикоррозионная защита алюминием и цинком трубо­проводов, цистерн, емкостей, металлоконструкций.

Плазменное напыление. Плазменное напыление является од­ним из эффективных способов нанесения защитных и упроч­няющих покрытий на поверхность деталей. Это — процесс, при котором наносимый материал в виде порошка или проволоки вводится в струю плазмы, нагревается до температур, превы­шающих температуру его плавления, и разгоняется в процессе нагрева до скоростей порядка нескольких сотен метров в секун­ду. Плазменное напыление является наиболее сложным процес­сом плазменной обработки.

Высокоскоростное напыление. В основе метода лежит на­грев порошковых частиц и их нанесение со скоростью 2000 м/с на поверхность детали. Частицы порошка посредством газовой струи переносятся на деталь, обладая высокой кинетической энергией, которая при ударе о подложку превращается в тепловую. В качестве напыляемых материалов используются различные металлические и металлокерамические порошки.

Метод позволяет наносить покрытия толщиной от 50 мкм до нескольких миллиметров. Оптимальную же толщину покрытия следует выбирать в каждом конкретном случае исходя из экс­плуатационных, технологических и экономических соображений. Так, например, при защите от коррозии оптимальная толщина покрытия варьируется в диапазоне от 150 до 350 мкм. При нане­сении износостойких покрытий их толщина выбирается в диа­пазоне от 300 до 600 мкм.

При восстановлении деталей толщина покрытия может быть значительно больше оптимальных значе­ний. Этим методом может быть нанесено покрытие на сталь, чу­гун и цветные металлы. Материал покрытия — металлы и сплавы. Кроме того, метод позволяет наносить высококачественные по­крытия из металлокерамики (карбид вольфрама, карбид хрома и др. с микротвердостью до 74 HRC), обладающей высокой твердостью. Такой ассортимент материалов позволяет обеспе­чить очень широкий спектр свойств покрытий. В подавляющем большинстве случаев путем подбора покрытия достигается мно­гократное увеличение ресурса новых деталей. Применение со­временных высококачественных газотермических покрытий по­зволяет эффективно решать ряд проблем — износ трущихся дета­лей, снижение коэффициента трения, гидроабразивный износ, коррозия и др.

Высокоскоростной метод напыления позволяет получить бо­лее плотное в 1,5-3 раза прилегание покрытия, меньшую в 5-12 раз пористость и большую твердость, повышает эксплуатацион­ные характеристики.

Газопламенное напыление полимеров. Напыление полиме­ров — метод получения тонкослойных покрытий и тонкостенных изделий путем нанесения порошкообразных полимерных компо­зиций на поверхность детали или формы. Сплошная защитная пленка (или стенка изделия) образуется при нагревании детали (или формы) с нанесенным слоем порошка выше температуры плавления полимера или при выдержке в парах растворителя, в котором полимер набухает. В промышленности применяют раз­личные способы напыления полимеров: газопламенное, вихре­ и коленчатые валы, клапаны, шкивы, маховики, ступицы колес и т. д. Наплавку можно производить почти всеми известными способами сварки плавлением. Каждый способ наплавки имеет свои достоинства и недостатки.

Для наплавки используют электроды диаметром 3-6 мм. При толщине наплавленного слоя до 1,5 мм применяются элек­троды диаметром 3 мм, а при большей толщине — диаметром 4- 6 мм. Для обеспечения минимального проплавления основного металла при достаточной устойчивости дуги плотность тока со­ставляет 11-12А/ММ 2 . Основными достоинствами ручной дуго­вой наплавки являются универсальность и возможность выпол­нения сложных наплавочных работ в труднодоступных местах. Для выполнения ручной дуговой наплавки используется обычное оборудование сварочного поста.

Для восстановления размеров изношенных деталей помимо электродов и присадочных прутков применяют наплавочные проволоки Нп-30; Нп-40; Нп-50 и т. д. Для наплавки штампов применяют легированные наплавочные проволоки Нп-45 Х 4ВЗФ, Нп-45 Х 2В8Т и др. (Нп — обозначает наплавочная).

Для износостойкой наплавки широкое применение находят порошковые проволоки в соответствии с ГОСТ 2601-84. Напри­мер, для наплавки деталей, работающих в условиях абразивного изнашивания с умеренными ударными нагрузками применяют порошковые проволоки марок ПП-Нп-200 х 12М; ПП-Нп- 200 х 12ВФ и т.д. (ПП обозначает «проволока порошковая»),

Микродуговое оксидирование. Метод используется для нане­сения покрытий на алюминиевые и магниевые сплавы и позволяет получать покрытия с высокими механическими, ди­электрическими и теплостойкими свойствами. Покрытия на алюминиевых и магниевых сплавах по износостойкости пре­вышают все существующие материалы, используемые в современной технике. Например, при одинаковой микротвер­дости с корундом износостойкость покрытий, полученных этим методом, может быть в несколько раз выше.

Основные области применения:

— создание коррозионностойких и износостойких покрытий для бурового, нефтедобывающего и нефтеперерабатывающего оборудования;

пары трения, подшипники скольжения, зубчатые переда­чи, поршни, цилиндры, торцевые уплотнения.

Источник

Способы восстановления деталей

Любой механизм изнашивается как в процессе эксплуатации, так и без неё – примером служит коррозионный износ. Для восстановления его исправности и работоспособности проводят комплекс операций, называемый ремонтом. Сегодня существуют разные способы восстановления деталей. Металлообработка — один из способов решения.

Виды способов восстановления изношенных деталей

Выделяют две группы основных способов восстановления изношенных деталей:
1. Слесарно-механический (индивидуальной подгонки);
2. Восстановление первоначальных размеров или устранения дефектов без замены поврежденных деталей методами:

  • наплавки и сварки;
  • пластического деформирования;
  • нанесения металлических и неметаллических покрытий;
  • пайкой.

Слесарно-механический способ восстановления

Особенностью данного способа является восстановление формы и взаимного расположения поверхностей без воссоздания первоначальных размеров.
Поставленные цели достигаются двумя путями:

  • обработкой обеих сопрягаемых деталей;
  • обработкой одной (как правило, более дорогой и сложной) детали;
  • взамен второй устанавливается серийно произведённая ремонтная или новая.

Например, при механическом способе восстановлении деталей автомобильного двигателя блок цилиндров и коленчатый вал обрабатываются до ближайшего ремонтного размера, а сопряженные – поршни, поршневые кольца, вкладыши – заменяются на новые. Ремонтные размеры устанавливает завод-изготовитель. Он же, как правило, выпускает сменные изделия.

При слесарно-механическом способе восстановления деталей выделяют такие операции:

  • шлифовальные работы (машинное и ручное);
  • шабровка по плите и калибрам;
  • опиловка;
  • притирка;
  • доводка.

Восстановление способом наплавки и сваркой

Восстановление деталей сваркой и наплавкой относится к самым распространённым методам.

При наплавке последовательно выполняются следующие операции.
Обработка изношенной поверхности, целью которой является удаление пограничного слоя наплавленного металла из зоны обработки.
Наплавка поверхности с припуском, достаточным для дальнейшей обработки.
Обработка наплавленной поверхности в соответствии с требованием чертежа.

Виды наплавки цилиндрических поверхностей

В случаях, когда износ механизма превышает нормы, установленные заводом изготовителем, может использоваться другой вариант.
Удаление повреждённой части механическим путем.
Изготовление нового изделия и приваривание его на место удалённого.
Термическая обработка (при необходимости).
Окончательная механическая обработка.

Сварка широко используется при ремонте корпусных деталей, в которых образовались трещины. Технологический процесс включает в себя несколько операций:

  • Определение направления трещины.
  • Засверливание металла на расстоянии 6 – 10 мм от видимого конца трещины.
  • Выборка трещины механическим путем с одновременной разделкой под сварку.
  • Заварка трещины с небольшим превышением над поверхностью основного металла.
  • Обработка поверхности наплавленного металла заподлицо с основным металлом.
  • Проверка геометрических параметров.
  • Обработка сопрягаемых поверхностей (при необходимости).
Читайте также:  Как народным способом вылечить суставы

Подготовка трещины к заварке:

  • зачистка трещины;
  • засверливание концов.

Пластическое деформирование восстанавливаемых деталей

Восстановление деталей способом пластического деформирования заключается в воссоздании их формы и размеров за счёт перераспределения металла под воздействием нагрузки, приложенной в определенном месте и в определенном направлении.

Изделия из низкоуглеродистых сталей (менее 0,3% углерода) и цветные сплавы реставрируют без подогрева. Средне- и высокоуглеродистые стали подогревают до температуры, определяемой по формуле:
Тнагрева=(0,70,9)Тплавления

Основные виды пластического деформирования:

  • осадка или осаживание – изменение диаметра цилиндрического изделия путем приложения к торцам осевой нагрузки;
  • раздача и обжатие – воссоздание соответственно наружного и внутреннего рабочего диаметра полого тела вращения за счет увеличения (уменьшения) внутреннего нерабочего диаметра;
  • вытяжка – увеличение длины изделия за счет местного сужения его поперечного сечения;
  • накатка – обработка поверхностей с помощью зубчатого ролика;
  • правка – воссоздание формы и устранение изгиба и скручивания (может производиться под прессом путем создания местного поверхностного наклепа и с помощью местного нагрева);
  • электромеханический способ восстановления деталей, применяемый, как правило, для обработки тел вращения, включает две операции:
    создание на поверхности микрорельефа в виде спиральной линии;
    выглаживание до заданного размера посредством деформирующей пластины.

Электрохимические способы реставрации деталей

Для восстановления деталей путём нанесения металлических покрытий применяется гальванический способ, с помощью которого наносят:

Хромовые и никелевые покрытия имеют толщину 0,25 – 0,3 мм, железные 2 – 3 мм и более. Железнение по своим параметрам приближается к наплавке, однако, обеспечивает относительно невысокую твёрдость. Существуют гладкие или пористые покрытия, применяемые для подвижных и неподвижных соединений.

Покрытие неметаллами

Сущность данного способа состоит:

  • в нанесении на предварительно очищенную и обезжиренную поверхность слоя двухкомпонентной полимерной композиции;
  • в фиксации с помощью вспомогательных приспособлений (при необходимости).

По сравнение с гальванизацией, нанесение неметаллических покрытий имеет ряд преимуществ:

  • простота, отсутствие необходимости в предварительной механической обработке ремонтируемой поверхности;
  • возможность нанесения толстого (10 – 15 мм) слоя полимера.

Вместе с тем, подобные покрытия заметно уступают металлам в износостойкости и долговечности.

Пайка изношенных деталей

Используется в основном при восстановлении или ремонте тонкостенных изделий, изготовленных из разнородных материалов, для устранения дефектов сварных швов и сборке схем электрооборудования.
Порядок технологических операций при пайке:

  • Зачистка поверхности.
  • Обработка флюсом.
  • Пайка.

При всём разнообразии способов восстановления деталей стоит учесть, какие металлические конструкции будут подвергаться восстановлению. Исходя из этого выбор варианта осуществляется на основании комплекса задач, которые необходимо решить в конкретном случае. Это экономические параметры, распространенность или уникальность восстанавливаемого изделия, наличие оборудования и материалов, и, в итоге, целесообразность проведения ремонта.

Мы надежная компания, в основе деятельности которой – правила честной конкуренции и жесткого контроля качества услуг.

Источник

Способы восстановления деталей

Целью ремонта деталей является восстановление всех геометрических размеров детали, формы и расположения поверхностей и обеспечение физико-механических свойств в соответствии с техническими условиями на изготовление новой детали.

Кроме того, при ремонте очень часто решается и задача повышения долговечности и работоспособности деталей за счет применения новых материалов, новых технологий и более прогрессивных способов выполнения работ с минимальными трудозатратами.

При ремонте автомобилей широкое применение находят следующие способы восстановления изношенных деталей: сварка и наплавка, пластическое деформирование, слесарно-механическая обработка, нанесением синтетических материалов, гальванические покрытия, пайка, газотермическое напыление.

Классификация способов восстановления деталей.

Сваркой и наплавкой:

— ручной покрытыми электродами;

— в среде углекислого газа;

— неплавящимся электродом (вольфрамовым) в среде аргона;

— электроконтактной приваркой ленты ( проволоки).

а) слесарной обработкой;

б) механической обработкой;

в) под ремонтный размер;

г) постановкой дополнительной ремонтной детали.

Нанесением синтетических материалов.

Пайкой.

а) газоэлектрическим:

б) газопламенным:

Восстановление деталей слесарно-механической обработкой. Обработка деталей под ремонтный размер.

Обработка поверхностей детали под ремонтный размер эффективна в случае, если механическая обработка при изменении размера не приведет к ликвидации термически обработанного поверхностного слоя детали. Тогда у дорогостоящей детали соединения дефекты поверхности устраняются механической обработкой до заранее заданного ремонтного размера (например, шейки коленчатого вала), а другую (более простую и менее дорогостоящую деталь) заменяют новой соответствующего размера (вкладыши).

В этом случае соединению будет возвращена первоначальная посадка (зазор или натяг), но поверхности детали, образующие посадку, будут иметь размеры, отличные от первоначальных. Восстановление деталей под ремонтные размеры характеризуется простотой и доступностью, низкой трудоемкостью (в 1,5-2,0 раза меньше, чем при сварке и наплавке) и высокой экономической эффективностью, сохранением взаимозаменяемости деталей в пределах ремонтного размера. Недостатки способа – увеличение номенклатуры запасных частей и усложнение организации процессов хранения деталей на складе, комплектования и сборки.

Постановка дополнительной ремонтной детали.

Способ дополнительных ремонтных деталей (ДРД) применяют для восстановления резьбовых и гладких отверстий в корпусных деталях, шеек валов и осей, зубчатых зацеплений, изношенных плоскостей. При восстановлении детали изношенная поверхность обрабатывается под больший (отверстие) или меньший (вал) размер и на нее устанавливается специально изготовленная ДРД: ввёртыш, втулка, насадка, компенсирующая шайба или планка. Крепление ДРД на основной детали производится напрессовкой с гарантированным натягом, приваркой, стопорными винтами клеевыми композициями, на резьбе. При выборе материала для дополнительных деталей следует учитывать условия их работы и обеспечивать срок службы до очередного ремонта. После установки рабочие поверхности дополнительных деталей обрабатываются под номинальный размер с соблюдением требуемой точности и шероховатости.

Заделка трещин в корпусных деталях фигурными вставками. Трещины в корпусных деталях (головках и блоках цилиндров двигателей, картерах коробок передач, задних мостах и других деталях) можно устранить двумя видами фигурных вставок.

Уплотняющие вставки применяют для заделки трещин длиной более 50 мм с обеспечением герметичности как толстостенных, так и тонкостенных деталей. Для тонкостенных деталей используют вставки диаметром 4,8 мм, а для деталей с толщиной стенок 12-18 мм – 6,8 мм. Для установки уплотняющей фигурной вставкисверлят отверстия диаметром 4,8 или 6,8 мм за пределами конца трещины на расстоянии 4-5 или 6-8 мм соответственно. Затем, используя специальный кондуктор, последовательно вдоль трещины сверлят такие же отверстия. Через каждые пять отверстий сверлят отверстия поперек трещины – по два с каждой стороны. Отверстия продувают сжатым воздухом, обезжиривают ацетоном, смазывают эпоксидным составом, устанавливают и расклёпывают фигурные вставки.

Стягивающие вставкииспользуют для стягивания боковых кромок трещины на толстостенных деталях. В деталях сверлят по кондуктору перпендикулярно трещине четыре или шесть отверстий диаметром, соответствующим диаметру вставки, с шагом, большим на 0,1-0,3, и глубиной 15 мм. Перемычку между отверстиями удаляют специальным пробойником в виде пластины шириной 1,8 или 3,0 мм в зависимости от размеров вставки. В паз запрессовывают фигурную вставку, ее расклепывают и зачищают этот участок заподлицо. Качество заделки трещин проверяют на герметичность на стенде в течение 3 минут при давлении 0,4 МПа.

Восстановление резьбовых поверхностей спиральными вставками.Один из способов восстановления изношенной или повреждённой резьбы – это установка резьбовой спиральной вставки. Эти вставки увеличивают надежность резьбовых соединений деталей. Спиральные вставки изготавливают из коррозионно-стойкой проволоки.

Технологический процесс восстановление резьбовой поверхности включает:

— рассверливание отверстия с применением накладного кондуктора и снятие фаски (1 x 45°);

— нарезание резьбы в рассверленном отверстии детали;

— установка резьбовой вставки в деталь: установить резьбовую вставку в монтажный инструмент; ввести стержень инструмента в резьбовую вставку так, чтобы ее технологический поводок вошел в пазнижнего конца стержня; завернуть вставку в отверстие наконечника инструмента, а затем с помощью инструмента в резьбовое отверстие детали;вынуть инструмент и удалить (посредством удара бородка) технологический поводок резьбовой вставки;

— контроль качества восстановления резьбы с помощью «проходного» и «непроходного» калибра или контрольного болта. При контроле резьбовая вставка не должна вывертываться вместе с калибром (контрольным болтом). Проходной калибр, завернутый на всю длину вставки, не должен отклоняться более чем на 0,5 мм в любую сторону. Непроходной резьбовой калибр соответствующего размера не должен ввертываться в установленную в деталь вставку. Резьбовая вставка должна утопать в резьбовом отверстии не менее чем на один виток резьбы. Выступание ее не допускается.

Восстановление посадочных отверстий свертными втулками. Восстанавливают свертными втулками посадочные отверстия под подшипники качения.

Технологический процесс включает в себя следующие операции:

— изготовление заготовки свертной втулки. Заготовки свертных втулок получают резкой стальной ленты на полосы. Толщина ленты зависит от износа детали;

— свертывание втулки из заготовки путем ее сгиба на специальных приспособлениях. После свертывания втулки с одного из ее торцов снимают фаску;

Читайте также:  Справочник способ выплаты зарплаты

— подготовка ремонтируемого отверстия под свертную втулку: растачивание отверстия; нарезка на обработанной поверхности винтообразной канавки треугольного профиля;

— установка втулки в ремонтируемое отверстие с помощью специальной оправки, которая крепится в пиноли задней бабки токарного станка;

— раскатка втулки специальным раскатником;

— обработка фаски в соответствии с чертежом на новую деталь.

Восстановление деталей способом пластического деформирования.

Способ пластического деформирования основан на способности деталей изменять форму и размеры без разрушения путем перераспределения металла под давлением, т.е. основан на использовании пластических свойств металла деталей. Пластическому деформированию могут подвергаться детали в холодном или в нагретом состоянии в специальных приспособлениях на прессах.

Стальные детали твердостью до HRC 30 (это низкоуглеродистые стали, а также детали из цветных металлов и сплавов) обычно деформируют в холодном состоянии без предварительной обработки. При холодном деформировании наблюдается упрочнение металла детали, т.е. происходит наклеп, который повышает предел прочности и твердости металла при одновременном понижении его пластических свойств. Этот процесс требует приложения больших усилий. Поэтому при восстановлении детали часто нагревают.

В нагретом состоянии восстанавливают детали из средне и высокоуглеродистых сталей. При восстановлении деталей необходимо учитывать верхний предел нагрева и температуру конца пластического деформирования металла. Относительно низкая температура конца деформирования металла может привести к наклепу и появлению трещин в металле.

Процесс восстановления размеров деталей состоит из следующих операций:

— подготовка – отжиг или отпуск обрабатываемой поверхности перед холодным или нагрев перед горячим деформированием;

— деформирование – осадка, раздача, обжатие, вытяжка, правка и др.;

— обработка после деформирования – механическая обработка восстановленных поверхностей до требуемых размеров и при необходимости термическая обработка;

— контроль качества – после восстановления детали должны также проверяться на отсутствие трещин.

Осадка. Используется для увеличения наружного диаметра сплошных и полых деталей, а также для уменьшения внутреннего диаметра полых деталей за счет сокращения их высоты. Допускается уменьшение высоты втулок на 8-10%.

Вдавливание. Отличается от осадки тем, что высота детали не изменяется, а увеличение её диаметра происходит за счет выдавливания металла из нерабочей части. Вдавливанием восстанавливают тарелки клапанов двигателей, зубчатые колеса и т.д.

Раздача. Применяют для увеличения наружного диаметра пустотелых деталей (втулки, поршневые пальцы и др.) при практически не изменяемой их высоте. Изменение наружного диаметра происходит за счет увеличения её внутреннего диаметра. При раздаче через отверстие детали продавливают калиброванный шарик или специальную оправку.

Обжатие. Восстанавливают детали с изношенными внутренними поверхностями за счет уменьшения наружных размеров, которые не имеют для них значения (проушины рычагов, вилок и др.). Обжатие осуществляется в холодном состоянии под прессом в специальном приспособлении. Втулку проталкивают через матрицу, которая имеет сужающееся входное отверстие под углом 7-8 о , калибрующую часть и выходное отверстие, расширяющееся под углом 18-20 о . Калибрующая часть матрицы позволяет уменьшить внутренний диаметр детали на величину износа с учетом припуска на развертывание до требуемого размера.

Накатка. Основана на вытеснении рабочим инструментом материала с отдельных участков изношенных поверхностей деталей. Способ позволяет увеличить диаметр накатываемой поверхности детали на 0,3-0,4 мм и применяется для восстановления изношенных посадочных мест под подшипники качения. Накатке подвергаются детали без термической обработки, но с обильной подачей индустриального масла. В качестве инструмента для накатки используют рифленый цилиндрический ролик или обойму с шариками, устанавливаемые на суппорте токарного станка.

Восстановление деталей сваркой и наплавкой.

На сварку и наплавку приходится от 40 до 80% всех восстановленных деталей.

Такое широкое распространение этих способов характеризуется следующими достоинствами:

— простотой технологического процесса и применяемого оборудования;

— возможностью восстановления деталей из любых металлов и сплавов;

— высокой производительностью и низкой себестоимостью;

— получением на рабочих поверхностях деталей наращиваемых слоёв практически любой толщины и химического состава (жаропрочные, кислотно-стойкие и т.д.)

Нагрев до температуры плавления материалов, приводит к возникновению вредных процессов, которые оказывают негативное влияние на качество восстанавливаемых деталей. К ним относятся металлургические процессы, структурные изменения, образование внутренних напряжений и деформаций в основном металле деталей.

В процессе сварки и наплавки из-за соединения металла с кислородом воздуха происходит его окисление, выгорание легирующих элементов (углерода, марганца, кремния и др.), насыщение наплавленного металла азотом (что является источником снижения пластичности и предела прочности) водородом, а также разбрызгивание металла.

Для защиты от этих отрицательных явлений при сварке и наплавке используют электродные обмазки, флюсы, которые при наплавлении образуют шлак, предохраняющий контакт металла с окружающей средой. С этой же целью применяют и защитные газы.

При сварке и наплавке выделяются углекислый и угарный газы, которые бурно расширяются и являются источником разбрызгивания жидкого металла.

Неравномерный нагрев детали в околошовной зоне (зоне термического влияния) приводит к структурным изменениям в основном металле детали. Механические свойства металла в этой зоне снижаются. Увеличение сварочного тока и мощности сварочной горелки приводит к расширению зоны термического влияния, а скорость сварки (при выборе рационального режима) – к уменьшению.

Из-за неравномерного нагрева, возникают внутренние напряжения деформации в деталях. Если внутренние напряжения превышают предел текучести материала детали, то возникают деформации. Они могут быть значительно снижены путем нагрева деталей перед сваркой и медленного охлаждения после сварки, а также применения специальных приемов сварки и наплавки.

Способы сварки и наплавки.

Ручная сварка и наплавка плавящимися электродами. Параметры режима – это сила тока, напряжение и скорость наплавки. Для получения минимальной глубины проплавления основного металла электрод наклоняют в сторону, обратную направлению наплавки (рис. 103).

Общие потери при наплавке покрытыми электродами с учетом потерь на угар, разбрызгивание и огарки составляют до 30%.

Длина дуги не должна превышать диаметра электрода.

Рис. 103. Схема ручной наплавки: 1 – основной металл; 2 – наплавленный валик; 3 – шлаковая корка; 4 – электродный стержень; 5 – покрытие электродного стержня; 6 – газошлаковая защита; 7 – сварочная ванна

Ручная сварка и наплавка используются для устранения трещин, вмятин, пробоин, изломов и т.д.

Газовая сварка и наплавка. Сущность процесса – это расплавление свариваемого и присадочного металла пламенем, которое образуется при сгорании горючего газа в смеси с кислородом. В качестве горючего газа используют ацетилен, что позволяет обеспечить температуру пламени 3100-3300°С.

Сварку и наплавку осуществляют сварочными горелками. Мощность пламени характеризуется расходом ацетилена, зависящим от номера наконечника горелки.

Угол наклона мундштука горелки к поверхности свариваемого металла зависит от толщины соединяемых кромок изделия и от теплопроводности металла (чем толще металл и чем больше его теплопроводность, тем угол мундштука горелки должен быть больше).

Конец присадочной проволоки держат в восстановительной зоне или в свариваемой ванне.

Существуют два основных способа газовой сварки – правый и левый.

Правый – это когда процесс сварки ведется слева на право (рис. 104 а), горелка перемещается впереди присадочного прутка, а пламя направлено на формирующийся шов. В результате происходит хорошая защита сварочной ванны от воздействия атмосферного воздуха и замедленное охлаждение сварного шва. Такой способ позволяет получить швы высокого качества. Применяется при сварке металла толщиной более 5 мм.

Левый представляет собой процесс сварки который выполняют справа налево (рис.104 б), горелка перемещается за присадочным прутком, а пламя направляется на не сваренные кромки и подогревает их, подготавливая к сварке. Пламя свободно растекается по поверхности металла, что снижает опасность его пережога. Этот способ позволяет получить внешний вид шва лучше, так как сварщик отчетливо видит шов и может сделать его равномерным по высоте и ширине, что особенно важно при сварке тонких листов.

Рис. 104. Основные способы газовой сварки: 1 – формирующий шов; 2 – присадочный пруток; 3 – пламя горелки; 4 – горелка

Дуговая наплавка под флюсом.Способ широко применяется для восстановления цилиндрических и плоских поверхностей деталей. Это механизированный способ наплавки, при котором совмещены два основных движения электрода, т.е. его подача по мере оплавления к детали и перемещение вдоль сварочного шва.

Сущность способа наплавки под флюсом заключается в том, что в зону горения дуги автоматически подаются сыпучий флюс и электродная проволока. Под действием высокой температуры образуется газовый пузырь, в котором существует дуга, расплавляющая металл. Часть флюса плавится, образуя вокруг дуги эластичную оболочку из жидкого флюса, который защищает расплавленный металл от окисления, уменьшает разбрызгивание и угар. При кристаллизации расплавленного металла образуется сварочный шов. (рис.105).

Рис. 105. Схема автоматической дуговой наплавки цилиндрических деталей под флюсом: 1 – патрон; 2 – кассета; 3 – бункер; 4 – флюс; 5 – деталь

Преимущества способа:

— возможность получения покрытия заданного состава;

— экономичность в отношении расхода электроэнергии и электродного материала;

Читайте также:  Способы образования юридических лиц пример

— независимость качества наплавленного металла от квалификации исполнителя;

— лучшие условия труда сварщиков ввиду отсутствия ультрафиолетового излучения;

— возможность автоматизации технологического процесса.

Недостатки способа:

— значительный нагрев детали;

— невозможность наплавки деталей диаметром менее 40 мм (из-за стекания наплавленного металла и трудности удержания флюса на поверхности детали);

— сложность применения для деталей сложной конструкции.

Наплавка в среде углекислого газа. Этот способ восстановления деталей отличается от наплавки под флюсом тем, что в качестве защитной среды используется углекислый газ.

Сущность способа наплавки в среде углекислого газа заключается в том, что электродная проволока из кассеты непрерывно подается в зону сварки. Ток к электродной проволоке подводится через мундштук и наконечник, расположенные внутри газоэлектрической горелки. При наплавке металл электрода и детали перемешиваются. В зону горения дуги под давлением 0,05-0,2 МПа по трубке подается углекислый газ, который вытесняя воздух, защищает расплавленный металл от вредного воздействия кислорода и азота воздуха. (рис. 106).

Рис. 106. Схема наплавки в среде углекислого газа: 1 – мундштук; 2 – электродная проволока; 3 – горелка; 4 – наконечник; 5 – сопло горелки; 6 – электрическая дуга; 7 – сварочная ванна; 8 – наплавленный металл; 9 – наплавляемая деталь

Достоинства способа:

— меньший нагрев деталей;

— возможность наплавки при любом пространственном положении детали;

— более высокая производительность по площади покрытия (на 20-30%);

— возможность наплавки деталей диаметром менее 40 мм;

— отсутствие трудоемкой операции по отделению шлаковой корки.

Недостатки способа:

— повышенное разбрызгивание металла (5-10%);

— необходимость применения легированной проволоки для получения наплавленного металла с требуемыми свойствами;

— открытое световое излучение дуги.

Электродуговая наплавка неплавящимся (вольфрамовым) электродом в среде аргона (аргоновая сварка). Этот способ наплавки широко используется для восстановления алюминиевых сплавов и титана. Сущность способа – электрическая дуга горит между неплавящимся электродом и деталью. В зону сварки подается защитный газ – аргон, а присадочный материал – проволока (из того же материала, что и деталь). Аргон надежно защищает расплавленный металл от окисления кислородом воздуха. Наплавленный металл получается плотным, без пор и раковин.

Преимущества способа:

— высокая производительность процесса (в 3-4 раза выше, чем при газовой сварке);

— высокая механическая прочность сварного шва;

— небольшая зона термического влияния;

— снижение потерь энергии дуги на световое излучение, т.к. аргон задерживает ультрафиолетовые лучи.

Недостатки способа:

— высокая стоимость процесса (в 3 раза выше, чем при газовой сварке).

Вибродуговая наплавка. Этот способ наплавки является разновидность дуговой наплавки металлическим электродом. Процесс наплавки осуществляется при вибрации электрода с подачей охлаждающей жидкости на наплавленную поверхность.

Вибратор создает колебания конца электрода, обеспечивая размыкание и замыкание сварочной цепи. При периодическом замыкании электродной проволоки и детали происходит перенос металла с электрода на деталь. Вибрация электрода во время наплавки обеспечивает стабильность процесса за счет частых возбуждений дуговых разрядов и способствует подаче электродной проволоки небольшими порциями, что обеспечивает лучшее формирование наплавленных валиков.

Плазменно-дуговая сварка и наплавка (плазмотрон). Плазменная струя представляет собой частично или полностью ионизированный газ. Струя обладает свойствами электропроводности и имеет высокую температуру. Она создается дуговым разрядом, размещенном в узком канале специального устройства, при обдуве электрической дуги потоком плазмообразующего газа. Температура струи достигает 10000-30000°С, а скорость в 2-3 раза превышает скорость звука.

В качестве плазмообразующих газов используют аргон и азот. Аргонная плазма имеет более высокую температуру – 15000-30000°С. Применение нейтральных газов способствует предотвращению окисления металлов.

В поток нагретого газа вводится материал для сварки и наплавки. Образующиеся расплавленные частицы материала выносятся потоком горячего газа из сопла и наносятся на поверхность изделия.

Лазерная наплавка. Этот способ наплавки представляет собой технологический метод получения покрытий с заданными физико-механическими свойствами путем нанесения наплавочного материала (порошок, фольга, проволока и др.) с последующим оплавлением его лазерным лучом. Наименьших затрат энергии требуют порошковые материалы.

Порошки на поверхность детали могут подаваться непосредственно в зону лазерного луча с помощью дозатора, после предварительной обмазки составом в виде коллоидного раствора (это смесь порошка и раствора целлюлозы).

Электроконтактная приварка ленты или проволоки. Сущность процесса – точечная приварка стальной ленты или проволоки к поверхности детали в результате воздействия мощного импульса тока. В точке сварки происходит расплавление металла ленты (проволоки) и детали.

Преимущества способа:

— высокая производительность процесса (в 2,5 раза превосходит вибродуговую наплавку);

— малое тепловое воздействие на деталь (не более 0,3 мм);

— небольшая глубина плавления;

— незначительный расход материала (в 4-5 раз превосходит вибродуговую наплавку);

— возможность получения не плавленого металла с любыми свойствами;

— благоприятные условия работы сварщика.

Недостатки способа:

— ограниченность толщины наплавленного слоя;

Особенности сварки чугунных деталей.Многие корпусные детали изготавливают из серого, высококачественного и ковкого чугуна, который является трудносвариваемым материалом. У деталей из чугуна сваркой заделывают трещины и отверстия, присоединяют отколотые части детали, наплавляют износостойкие покрытия.

Наличие в чугуне значительного содержания углерода и низкая его вязкость вызывают значительные трудности при восстановлении деталей из этого материала. Быстрое охлаждение чугуна приводит к образованию в околошовной зоне твердых закалочных структур. В этих зонах металл тверд и хрупок. Выгорание углерода и кремния в процессе сварки приводит к тому, что сварочный шов получается пористым и загрязненным шлаковыми включениями, которые появляются в результате неполного выделения газов и шлаков из-за быстрого перехода чугуна из жидкого состояния в твердое.

При восстановлении чугунных деталей применяют горячий и холодный способ сварки.

Горячая сварка чугуна – это процесс, который предусматривает нагрев детали (в печи или другими способами) до температуры 650-680°С. Температура детали во время сварки должна быть не ниже 500°С.

Такие температуры позволяют:

— освободить свариваемую деталь от внутренних напряжений;

— задержать охлаждение сварочной ванны, что способствует выравниванию состава металла;

— предупредить появление сварочных напряжений и трещин.

Для деталей с большой жесткостью (блок цилиндров и другие корпусные детали) при сварке обязателен общий нагрев.

Лучшие результаты при горячей сварке чугуна даёт ацетилено-кислородное пламя с присадочным материалом из чугуна. При сварке необходимо применять флюс.

Газовая сварка чугуна цветными сплавами без подогрева детали. Выполняют в сочетании с дуговой сваркой и широко применяют в ремонтном производстве для сварки трещин на обрабатываемых поверхностях корпусных деталей. Присадочный материал – латунь. Температура плавления латуни (880-950°С) ниже температуры плавления чугуна, поэтому её можно применять для сварки, не доводя чугун до плавления и не вызывая в нем особых структурных изменений и внутренних напряжений. Использование этого процесса позволяет получить сварочные швы плотные, легко поддающиеся обработке.

Холодная сварка чугуна. При этом процессе деталь не нагревают (возможен подогрев не свыше 400°С для снятия напряжения и предупреждения возникновения сварочных напряжений). Сварочная ванна имеет небольшой объём металла и быстро твердеет. Способ получил более широкое применение по сравнению с горячей сваркой из-за простоты выполнения. В зоне сварного шва происходит отбеливание и закалка с одновременным ростом внутренних напряжений, которые могу привести к образованию трещин.

Холодная сварка применяется для устранения трещин и заварки пробоин в тонкостенных корпусных и крупногабаритных чугунных деталях, которые требуют последующей механической обработки и эксплуатируются под нагрузкой при тепловом воздействии.

Особенности сварки деталей из алюминия и его сплавов. Особенность сварки состоит в следующем:

— очень плохая сплавляемость алюминия (температура плавления алюминия 658°С) из-за образования на его поверхности тугоплавкой окисной плёнки, температура плавления которой 2050°С. Окислы снижают механическую прочность деталей. Для их удаления применяют флюсы;

— при нагреве до 400-450°С алюминий сильно теряет свою прочность, и деталь может разрушиться даже от легкого удара;

— алюминий, как и чугун, не имеет пластического состояния и при нагреве сразу переходит из твердого состояния в жидкое.

Для уменьшения внутренних напряжений целесообразно подогревать детали перед сваркой до температуры 250-300°С и медленно охлаждать после сварки.

Для деталей из алюминия и его сплавов рекомендуются следующие способы сварки:

— неплавящимися вольфрамовыми электродами в среде аргона (аргонодуговая сварка).В качестве присадочного материала используют сплавы алюминия;

— электродами из сплава алюминия или из сплава технического алюминия на постоянном токе обратной полярности, короткой дугой (электродуговая сварка). Стержень электрода изготавливают из алюминиевой проволоки. Электрод имеет специальное покрытие (флюс);

— ацетилено-кислородным нейтральным пламенем (газовая сварка) с использованием флюса. Присадочный материал должен быть того же состава, что и основной металл. В момент расплавления основного и присадочного материалов пленку окислов разрывают с помощью стального крючка.

Источник

Оцените статью
Разные способы