Состав химического соединения не зависит от способа его получения

Закон постоянства состава.

Закон постоянства состава впервые сформулировал в 1808г. французский учёный-химик Жозеф Луи Пруст.

Закон постоянства состава формулируется так:

Вещество, независимо от способа его получения, всегда имеет постоянный качественный и количественный состав.

Вещества с постоянным составом названы дальтонидами в честь английского химика Джона Дальтона.

Из закона постоянства состава следует, что при образовании сложного вещества элементы простых веществ соединяются друг с другом в строго определенных массовых долях.

Массовая доля элемента ωЭ показывает, какую часть составляет масса данного элемента от массы всего вещества, где

n – число атомов;

ArЭ – относительная атомная масса элемента;

Mr – относительная молекулярная масса вещества.

.

Развитие химии показало, что наряду с веществами, имеющими постоянный состав, существуют вещества с переменным составом, который зависит от способа получения. Такие вещества назвали в честь французского химика Клода Бертолле – бертоллидами.

Бертоллиды не подчиняются законам стехиометрии. Примеры бертоллидов есть в классах оксидов, сульфидов, карбидов, гидридов и пр.

Исходя из вышеизложенного, уточним формулировку закона постоянства состава:

Состав соединений с молекулярной структурой является постоянным независимо от способа получения. Состав же соединений с немолекулярной структурой (с атомной, ионной и металлической решеткой) не является постоянным и зависит от условий получения.

Источник

Учение о составе вещества

На этом уровне решались вопросы определения химического элемента, химического соединения и получения новых материалов на базе более широкого использования химических элементов.

Первое научное определение химического элемента, как «простого тела», сформулировал в XVII в. английский химик и физик Р. Бойль.Но в это время еще не было открыто ни одного из них. Первым был открыт химический элемент фосфор в 1669 г., потом кобальт, никель и другие.

4. Эволюционная химия
3. Учение о химических процессах
2. Структурная химия
1. Учение о составе
1660-е гг. 1800-е гг. 1950-е гг. 1970-е гг. Настоящее время

Рис. 1. Основные концепции химической науки.

Но еще и в XVIII веке железо, медь и другие, известные в то время металлы, ученые рассматривали как сложные тела, а окалину, получающуюся при их нагревании — за простое тело. Но окалина – это оксид металла, сложное тело.

Ошибочное представление, существовавшее в XVIII веке, было связано с ложной гипотезой флогистона немецкого врача и химика Георга Шталя (1660 — 1734). Он считал, что металлы состоят из окалины и флогистона (от греч. flogizein — зажигать, гореть), особого невесомого вещества, которое при нагревании улетучивается и остается чистый элемент. В состав пчелиного воска и угля, по его мнению, входит преимущественно флогистон, который при горении улетучивается и в результате остается лишь немного золы.

Открытие французским химиком А. Л. Лавуазье кислорода и установление его роли в образовании различных химических соединений позволило отказаться от прежних представлений о флогистоне. Лавуазье впервые систематизировал химические элементы на базе имевшихся в XVIII в. знаний. Постепенно химики открывали все новые и новые химические элементы, описывали их свойства и реакционную способность и благодаря этому накопили огромный эмпирический материал, который необходимо было привести в определенную систему. Такие системы предлагались разными учеными, но были весьма несовершенными потому, что в качестве системообразующего фактора брались несущественные, второстепенные и даже чисто внешние признаки элементов.

Великая заслуга Д. И. Менделеева состоит в том, что, открыв в 1869 г. периодический закон, он заложил фундамент для построения подлинно научной системы химических элементов. В качестве системообразующего фактора он выбрал атомный вес. В соответствии с атомным весом он расположил химические элементы в систему и показал, что их свойства находятся в периодической зависимости от величины атомного веса. До системного подхода Менделеева учебники по химии были очень громоздки. Так, учебник химии Л.Ж. Тенара состоял из 7 томов по 1000 – 1200 страниц каждый.

Периодический закон Д. И. Менделеева сформулирован в следующем виде: «Свойства простых тел, а также формы и свойства соединений элементов находятся в периодической зависимости от величины атомных весов элементов».

Это обобщение давало новые представления об элементах, но в силу того, что еще не было известно строение атома, физический смысл его был недоступен. В современном представлении этот периодический закон выглядит следующим образом: «Свойства простых веществ, а также формы и свойства соединений элементов находятся в периодической зависимости от величины заряда ядра атома (порядкового номера)». Например, элемент хлор имеет два изотопа[1], отличающиеся друг от друга по массе атома. Но оба они относятся к одному химическому элементу — хлору из-за одинакового заряда их ядер. Атомный же вес является средним арифметическим величин масс изотопов, из которых состоит элемент.

В Периодической системе Д.И. Менделеева насчитывалось 62 элемента, в 1930-е гг. она заканчивалась ураном (Z = 92). В 1999 г. было сообщено, что путем физического синтеза атомных ядер открыт 114-й элемент.

Длительное время химикам казалось очевидным, что именно относится к химическим соединениям, а что — к простым телам или смесям. Однако применение в последнее время физических методов исследования вещества позволило выявить физическую природу химизма, т.е. те внутренние силы, которые объединяют атомы в молекулы, представляющие собой прочную квантово-механическую целостность. Такими силами оказались химические связи.

Химическая связь является таким взаимодействием, которое связывает отдельные атомы в более сложные образования, в молекулы, ионы, кристаллы, т.е. в те структурные уровни организации материи, которые изучает химическая наука. Химические связи представляют собой обменное взаимодействие электронов с соответствующими характеристиками. Речь идет, прежде всего, об электронах, расположенных на внешней оболочке и связанных с ядром наименее прочно. Их назвали валентными электронами. В зависимости от характера взаимодействия между этими электронами выделяют типы связи.

Ковалентная связь осуществляется за счет образования электронных пар, в одинаковой мере принадлежащих обоим атомам.

Ионная связь представляет собой электростатическое притяжение между ионами, образованное за счет полного смещения электрической пары к одному из атомов, например, NaCl.

Металлическая связь это связь между положительными ионами в кристаллах атомов металлов, образующаяся за счет притяжения электронов, но перемещающаяся по кристаллу в свободном виде.

Дальнейшее развитие науки позволило уточнить, что свойства химических элементов зависят от заряда ядра атомов, который определяется числом протонов или соответственно электронов. В настоящее время химическим элементом называют совокупность атомов с конкретным зарядом ядра Z, хотя и различающихся по своей массе, вследствие чего атомные веса элементов не всегда выражаются целыми числами.

Читайте также:  Способы формирования капитала производственного кооператива

Простое вещество – это форма существования химического элемента в свободном состоянии. Однако, к примеру, даже газообразный (не говоря уже о жидком и твердом агрегатном состоянии) водород существует в двух разновидностях, различающихся магнитной ориентацией ядер Н – ортоводород и параводород. Они различаются, к примеру, теплоемкостью. Существует также две разновидности газообразного и четыре – жидкого кислорода. Поэтому простых веществ насчитывается св. 500, в то время как химических элементов – чуть более ста.

С позиций атомизма решается также проблема химического соединения. Что считать смесью, а что химическим соединением? Обладает ли такое соединение постоянным или переменным составом?

Французский химик Жозеф Пруст (1754 – 1826) считал, что любое химическое соединение должно обладать вполне определенным, неизменным составом: «…природа дала химическому соединению постоянный состав и тем самым поставила его в совершенно особое положение по сравнению с раствором, сплавом и смесью»[2]. При этом состав химического соединения не зависит от способа его получения.

Впоследствии закон постоянства состава с позиций атомно-молекулярного учения обосновал выдающийся английский химик Джон Дальтон (1766 — 1844). Он ввел в науку понятие «атомный вес» и утверждал, что всякое вещество, простое или сложное, состоит из мельчайших частиц — молекул, которые в свою очередь образованы из атомов. Именно молекулы являются наименьшими частицами, обладающими свойствами вещества.

Долгое время сформулированный Прустом закон постоянства химического состава считался абсолютной истиной, хотя другой французский химик Клод Бертолле (1748 – 18232) указывал на существование соединений переменного состава в форме растворов и сплавов. Впоследствии были найдены более убедительные доказательства существования химических соединений переменного состава в школе известного русского физикохимика Николая Семеновича Курнакова (1860 — 1940). В честь К. Бертолле он назвал их бертоллидами. К ним он отнес те соединения, состав которых зависит от способа их получения. Например, соединения таких двух металлов, как марганец и медь, магний и серебро и других характеризуются переменным составом, но они составляют единые химические соединения. Со временем химики открыли другие соединения такого же переменного состава и пришли к выводу, что они отличаются от соединений постоянного состава тем, что не обладают специфическим молекулярным строением.

Поскольку выяснилось, что природа соединения, то есть характер связи атомов в его молекуле зависит от их химических связей, то расширилось и представление о молекуле. Молекулой по-прежнему называют наименьшую частицу вещества, которая определяет его свойства и может существовать самостоятельно. Однако к молекулам теперь относят также разнообразные другие квантово-механические системы (ионные, атомные монокристаллы, полимеры, возникающие на основе водородных связей, и другие макромолекулы). В них химическая связь осуществляется не только путем взаимодействия внешних, валентных электронов, но и ионов, радикалов и других компонентов. Они обладают молекулярным строением, хотя и не находятся в строго постоянном составе.

Таким образом, ныне исчезает резкое прежнее противопоставление химических соединений постоянного состава, обладающих специфическим молекулярным строением, и соединений переменного состава, лишенных этой специфики. Теряет также силу отождествление химического соединения с молекулой, состоящей из нескольких разных атомов химических элементов. В принципе молекула соединения может состоять и из двух или нескольких атомов одного элемента: это молекулы Н2, О2, графит, алмаз и другие кристаллы.

Ныне имеются сведения о 8 млн. индивидуальных химических соединений постоянного и миллиардах – переменного состава.

В рамках учения о составе и строении элементов важное место занимаетпроблема производства новых материалов.Речь идет о включении в их состав новых химических элементов. Дело в том, что 98,7% массы слоя Земли, на котором осуществляет свою производственную деятельность человек, составляют восемь химических элементов: 47,0% — кислород, 27,5% — кремний, 8,8% — алюминий, 4,6% — железо, 3,6% — кальций, 2,6% — натрий, 2,5% — калий, 2,1% — магний. Однако эти химические элементы распределены на Земле неравномерно и также неравномерно используются. Более 95% изделий из металла в своей основе содержат железо.Такое потребление ведет к дефициту железа. Поэтому стоит задача использовать для человеческой деятельности и другие химические элементы, способные заменить железо, в частности, наиболее распространенный кремний. Силикаты, различные соединения кремния с кислородом и другими элементами составляют 97% массы земной коры.

На основе современных достижений химии появилась возможность замены металлов керамикой не только как более экономичным продуктом, но во многих случаях и как более подходящим конструкционным материалом по сравнению с металлом. Более низкая плотность керамики (40%) дает возможность снизить массу изготовляемых из нее предметов. Включение в производство керамики новых химических элементов: титана, бора, хрома, вольфрама и других позволяет получать материалы с заранее заданными специальными свойствами (огнеупорность, термостойкость, высокая твердость и т.д.).

Во второй половине XX в. стали использоваться все новые и новые химические элементы в синтезе элементоорганических соединений от алюминия до фтора. Часть таких соединений служит в качестве химических реагентов для лабораторных исследований, а другая — для синтеза новейших материалов.

Около 10 лет назад насчитывалось более 1 млн. разновидностей продукции, выпускаемой химической промышленность. Ныне в химических лабораториях нашей планеты ежедневно синтезируется 200 – 250 новых химических соединений.

Источник

Конспект по химии для 8 класса «Основные понятия химии»

Предварительный просмотр:

8 класс Первоначальные химические понятия

Химия – наука о веществах, составе и свойствах веществ, а также превращениях между ними.

Вещество — материя, из которой состоит физическое тело.

Химический элемент –определенный вид атомов, имеющих одинаковый размер, массу и свойства.

Атом- наименьшая частица вещества, являющаяся носителем его свойств.

Молекула – частица, образованная из двух или большего числа атомов и способная к самостоятельному существованию.

Простое вещество — вещество, состоящее из атомов одного химического элемента.

Сложное вещество — вещество, состоящее из атомов разных химических элементов.

Относительная атомная масса (Ar) — величина, которая показывает, во сколько раз масса атома химического элемента больше атомной единицы массы (1/12 массы атома углерода).

Относительная молекулярная масса(Mr) – величина, которая показывает, во сколько раз масса молекулы больше атомной единицы массы (1/12 массы атома углерода).

Ион — это положительно или отрицательно заряженная частица, образованная из атома химического элемента в результате отдачи или присоединения электронов. Положительно заряженный ион- катион , отрицательно заряженный ион – анион.

Читайте также:  Способы обеспечения надежного функционирования икт

Химическая связь — такое взаимодействие между атомами, которое связывает их в молекулы, ионы, кристаллы.

  • Ионная связь — связь, возникающая между ионами. (за счет перехода электронов от атома металла к атому неметалла):NaCl, CaBr 2 , K 2 O и др.
  • Ковалентная неполярная связь — связь, возникающая между атомами одного и того же химического элемента – неметалла (О 2 , N 2 , Cl 2, Br 2 , O 3 и т.п.)
  • Ковалентная полярная связь — связь, возникающая между атомами разных неметаллов (СО 2 , H 2 O, NH 3 ).
  • Металлическая связь — связь, возникающая между атомами и ионами металлов за счет обобществленных электронов (Сu, Al, Na, K и др.).

Электроотрицательность — способность атома химического элемента притягивать к себе общие электронные пары от атомов других химических элементов.

Степень окисления – условный заряд атомов химического элемента в соединении, вычисленный на основе предположения, что соединения состоят только из ионов.

— простые (металлы и неметаллы)

— сложные (оксиды, основания, кислоты, соли).

  • Оксиды — сложные вещества, состоящие из двух химических элементов, один из которых кислород со степенью окисления -2. ( Э х О у -2 )
  • Основания — сложные вещества, состоящие из катионов металла и гидроксид-ионов ОН. (Me +x (OH) x )
  • Кислоты — сложные вещества, состоящие из катионов водорода Н + и анионов кислотных остатков.
  • Соли — сложные вещества, состоящие из катионов металла и анионов кислотных остатков.

Моль — такое количество вещества, в котором содержится 6∙10 23 частиц этого вещества (атомов, молекул или ионов)

Молярная масса(M)- масса 1 моль вещества, численно равна относительной молекулярной массе, но в отличие от нее имеет единицы измерения. [M]=[г/моль].

Молярный объем (Vm)- объем газа количеством вещества 1 моль, измеренный при нормальных условиях ( t= 0 o C или 273К, р=101,3 кПа, 1 атм или 760мм рт. ст.). Vm= 22,4 л/моль

Химическая реакция — явление, в результате которого из одних веществ образуются другие вещества, при этом изменяется состав и свойства веществ.

  • Реакции разложения — реакции, в результате которых из одного сложного вещества образуются нескольно простых или сложных веществ( АВ= А+В)
  • Реакции соединения — реакции, в результате которых из нескольких простых или сложных веществ образуется одно сложное. (А+В=АВ).
  • Реакции замещения – реакции, в результате которых атомы простого вещества замещают один или несколько атомов в сложного вещества ( А +ВС= А С +В)
  • Реакции обмена — реакции, в результате которых атомы сложных веществ обмениваются своими составными частями ( А В+ C D= A D + C B)

Физические явления — явления, при которых могут изменяться размеры, форма тел и агрегатное состояние веществ, при этом состав их остается постоянным.

Химическое уравнение – условная запись химической реакции с помощью химических формул и математических знаков.

Закон сохранения массы веществ (1748г М.В. Ломоносов, 1789г А.Лавуазье): масса веществ , вступивших в химическую реакцию, равна массе образовавшихся веществ.

Закон постоянства состава (1808г Ж. Пруст)- вещества молекулярного строения имеют постоянный количественный и качественный состав, не зависящий от способа их получения.

Периодический закон (1861 г Д.И.Менделеев ) –свойства химических элементов и их соединений находятся в периодической зависимости от зарядов ядер их атомов.

Основные законы химии

Закон сохранения массы веществ

Закон постоянства состава

Периодический закон

Закон сохранения массы

Состояние 3 — это состояние перед самой остановкой. Тело как бы только-только дотронулось до земли, при этом скорость максимальная. Тело обладает максимальной кинетической энергией. Потенциальная энергия равна нулю (тело находится на земле).

Полные механические энергии равны между собой , если пренебрегать силой сопротивления воздуха. Например, максимальная потенциальная энергия в состоянии 1 равна максимальной кинетической энергии в состоянии 3.

А куда потом исчезает кинетическая энергия? Исчезает бесследно? Опыт показывает, что механическое движение никогда не исчезает бесследно и никогда оно не возникает само собой. Во время торможения тела произошло нагревание поверхностей. В результате действия сил трения кинетическая энергия не исчезла, а превратилась во внутреннюю энергию теплового движения молекул.

При любых физических взаимодействиях энергия не возникает и не исчезает, а только превращается из одной формы в другую.

Общая форма закона сохранения и превращения энергии имеет вид:

Изучая тепловые процессы, мы будем рассматривать формулу

При исследовании тепловых процессов не рассматривается изменение механической энергии, то есть

Закон эквивалентов

Эквивалент (Э) – реальная или условная частица вещества, кото­рая может присоединить, заместить в кислотно-основных реакциях один ион водорода (или другого одновалентного элемента), а в окис­лительно-восстановительных реакциях – присоединить или высвободить один электрон.

Под условной частицей вещества подразумевается реально су­ществующие частицы (молекулы, ионы, электроны и т.д.), доли этих частиц (например, 1 /2 иона) или их группы.

Фактор эквивалентности fэ (х) – число, обозначающее, какая доля реальной частицы вещества X эквивалентна одному иону водорода в кислотно-основной реакции или одному электрону в реакции окисления-восстановления.

Фактор эквивалентности – величина безразмерная. Принимает значения 1 или меньше единицы.

Для простых веществ и элементов в соединении fэ(х) = 1/В, где В – валентность элемента.

Например, для водорода или натрия fэ= 1/1 = 1. Для магния или кислорода fэ = 1/2.

Молярная масса эквивалента вещества Мэ(х) – масса одного моля эквивалента этого вещества, равная произведению фактора эквивалентности fэ(х) на молярную массу вещества Мх.

Например, молярные массы эквивалентов простых веществ:

Мэ(Na) = 1· 23 = 23 г/моль;

Мэ(Mg) = ½ · 24 = 12 г/моль;

Если одно из реагирующих веществ – газ, то для него вводится понятие объема эквивалента вещества – Vэ(х), который рассчитывается на основании следствия из закона Авогадро:

1 моль газа массой М занимает объем 22,4 л, при нормальных условиях (н.у.):

Р o = 1 атм.; Т о = 273 К

1 эквивалент газа массой Мэ занимает объем Vэ при н.у.

Например, при нормальных условиях 1 моль эквивалентов водорода занимает объем, равный:

Для кислорода эта величина составляет

Закон эквивалентов: массы (или объемы) реагирующих веществ пропорциональны молярным массам эквивалентов (или эквивалентным объемам) этих веществ.

Если одно из этих веществ представляет собой газ, то закон эквивалентов записывается в виде

Закон кратных отношений

Относительные атомные и молекулярные массы являются мерой масс атомов и молекул, поэтому они позволяют сделать вывод о соотношении масс атомов различных элементов в молекуле сложного вещества.

Пример: Относительная атомная масса водорода и кислорода соответственно равна 1,00794 и 15,9994, откуда следует, что соотношение масс атомов водорода и кислорода составляет 1 : 16. В молекуле воды H2O содержится два атома водорода и один атом кислорода, следовательно, массовое отношение водорода и кислорода в воде равно 2 : 16 или 1 : 8. Соотношение атомных масс элементов в соединениях устанавливает закон постоянства состава, вывел его в начале XIX в. французский химик Жозеф Луи Пруст (1754-1826) на основании анализа химических соединений.

Читайте также:  Плюсы способа добычи нефти

Его современная формулировка такова:

Каким бы способом ни было получено вещество, его химический состав остается постоянным

В каждом сложном веществе (независимо от способа его получения) сохраняются неизменными соотношения чисел атомов и масс атомов входящих в его состав элементов. При этом, отношение чисел атомов различных элементов выражается небольшими целыми числами. Так, для воды H2O они составляют 2 : 1, для диоксида углерода CO2 — 1 : 2, для оксида азота (III) N2O3 — 2 : 3. Эти числа и определяют состав указанных сложных веществ.

Отсюда следует, что если два или несколько простых веществ соединяются с образованием некоторого сложного вещества, то и массовое отношение реагирующих веществ постоянно для данного продукта. Так, при взаимодействии водорода и кислорода могут быть получены вода H2O и пероксид водорода H2O2; очевидно, что не только в самих продуктах массовое отношение водорода и кислорода равно соответственно 1 : 8 и 1 : 16, но и массовые отношения реагентов будут такими же.

На основании закона постоянства состава и закона кратных отношений английский исследователь Джон Дальтон (John Dalton, 1766-1844) в 1807 г. высказал атомную гипотезу (основу атомно-молекулярного учения о строении вещества):

Любое вещество составлено из мельчайших химических частиц — атомов; простое вещество состоит из атомов одного элемента, сложное вещество — из атомов различных элементов.

Из атомной гипотезы вытекает, что закон постоянства состава отражает именно атомный состав вещества: в молекулу вещества объединяется определенное число именно атомов одного или различных элементов. Закон кратных отношений, открытый Дальтоном, гласит:

Если два элемента образуют между собой несколько соединений, то массы атомов одного элемента, приходящиеся на одну и ту же массу атомов другого элемента, соотносятся между собой как небольшие целые числа.

Пример: Сера образует два оксида — диоксид SO2 и триоксид SO3. Относительная атомная масса серы и кислорода равна 32 и 16 (округлено). Массовое отношение серы и кислорода в SO2 равно 32 : (2·16) = 32 : 32, в SO3 32 : (3·16) = 32 : 48. Отсюда следует, что на каждые 32 массовые части серы в этих соединениях приходится 32 и 48 массовых частей кислорода соответственно, т.е. а после сокращения в соответствии с математическими законами, соотношение массовых частей кислорода 32 : 48 = 2 : 3, что и является отношением небольших кратных чисел.

Закон объемных отношений (закон Гей-Люссака)

Закон Авогадро

Из закона Авогадро вытекает важное следствие: моль любого газа при нормальных условиях (0С (273 К) и давлении 101,3 кПа) занимает объем, равный 22,4 л. В этом объеме содержится 6,02 10 23 молекул газа (число Авогадро).

Из закона Авогадро также следует, что массы равных объемов различных газов при одинаковых температуре и давлении относятся друг к другу как молярные массы этих газов:

М1 и М2 – молекулярные массы первого и второго газов.

Поскольку масса вещества определяется по формуле

где ρ – плотность г аза,

то плотности различных газов при одинаковых условиях пропорциональны их молярным массам. На этом следствии из закона Авогадро основан простейший метод определения молярной массы веществ, находящихся в газообразном состоянии.

Закон Авогадро позволяет рассчитать плотность газа при нормальных условиях, на основании отношения молярной массы М к объему моля:

.

Из этого уравнения можно определить молярную массу газа:

.

Объединенный газовый закон

Идеальный газ — это такой гипотетический газ, молекулы которого не взаимодействуют друг с другом и занимают нулевой объем. Соотношения между давлением, объемом и температурой газов устанавливают законы идеальных газов: объединенный газовый закон, законы для изобарическо­го, изохорического и изотермического процессов.

Реальные газы обычно хорошо подчиняются законам идеальных газов при давлениях, менее или несущественно превышающих атмосферное, и при температурах близких к температуре окружающей среды или более высоких. Поэтому законы идеальных газов находят широкое применение в природопользовании, в частности при расчетах количества, состава газов, выделяющихся при горении, и в других технологических процессах, со­провождаемых их образованием.

Объединенный газовый закон можно также записать в другой форме:

Точное значение постоянной в правой части этого уравнения зависит от количества газа. Если количество газа равно одному молю (см. гл. 4), то соответствующая постоянная обозначается буквой R и называется молярная газовая постоянная, или просто газовая постоянная. Если давление выражено в атмосферах, постоянная R имеет значение

R = 8,314 Дж*К* моль-1

Объединенный газовый закон для одного моля газа приобретает вид:

где Vm- объем одного моля газа. Для п молей газа получается уравнение:

В такой форме объединенный газовый закон называется уравнением состояния идеального газа. Уравнение состояния это уравнение, связывающее между собой параметры состояния газа-давление, объем и температуру.

Газ, который полностью подчиняется уравнению состояния идеального газа, называется идеальный газ. Такой газ не существует в действительности. Реальные газы хорошо подчиняются уравнению состояния идеального газа при низких давлениях и высоких температурах. Отклонения в поведении реальных газов от предписываемш уравнением состояния идеального газа подробно обсуждаются ниже.

Вычисление относительной молекулярной массы с помощью уравнения состояние идеального газа. Уравнение состояния идеального газа позволяет проводить прямые вычисления относительной молекулярной массы газа M1. Введем понятие относительной молекулярной массы, основываясь на уже знакомом нам (из гл. 1) определении относительной атомной массы A1. Для газа, состоящего из простых молекул, относительная молекулярная масса представляет собой сумму относительных атомных масс всех атомов, входящих в молекулу. Например, для диоксида углерода.

Относительная молекулярная масса, выраженная в граммах на моль, называется молярной массой (см. гл. 4). Следовательно, молярная масса CO2 равна 44 г/моль. Два моля CO2 имеют массу 88 г, а и молей-массу п -44 г. В общем случае можно записать:

где n-количество вещества в молях (т.е. число молей данного вещества), т-масса вещества в граммах, a M-его молярная масса.

Подстановка полученного выражения для п в уравнение состояния идеального газа (4) дает:

Это уравнение позволяет, зная массу и объем газа при определенных температуре и давлении, вычислить его молярную массу М. А поскольку

M = M (г/моль), то полученный результат непосредственно дает относительную молекулярную массу М.

Уравнение Клайперона—Менделеева (для идеального газа)

n – число молей газа;

P – давление газа, Па;

V – объем газа, м 3 ;

T – абсолютная температура газа, К;

R – универсальная газовая постоянная 8,314 Дж/моль×K.

Если объём газа выражен в литрах, то уравнение Клапейрона-Менделеева записывается в виде:

Источник

Оцените статью
Разные способы