- Функция. Способы задания функций.
- Определение функции. Способы задания функции.
- Способы задания функции.
- Аналитический способ задания функции.
- Графический способ задания функции.
- Табличный способ задания функции.
- Способы задания функции
- Определение сущности функции, областей ее определение и значения. Особенности аналитического и табличного способов задания функций. Рассмотрение основных свойств и графического отражения постоянной, линейной, степенной, обратной, сложной функций.
- Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
- Подобные документы
Функция. Способы задания функций.
Функция является заданной, иначе говоря, известной, если для каждого значения возможного числа аргументов можно узнать соответствующее значение функции. Наиболее распространенные три способа задания функции: табличный, графический, аналитический, существуют еще словесный и рекурсивный способы.
1. Табличный способ наиболее широко распространен (таблицы логарифмов, квадратных корней), основное его достоинство – возможность получения числового значения функции, недостатки заключаются в том, что таблица может быть трудно читаема и иногда не содержит промежуточных значений аргумента.
Аргумент х принимает заданные в таблице значения, а у определяется соответственно этому аргументу х.
2. Графический способ заключается в проведении линии (графика), у которой абсциссы изображают значения аргумента, а ординаты – соответствующие значения функции. Часто для наглядности масштабы на осях принимают разными.
Например: для нахождения по графику у, которому соответствует х = 2,5 необходимо провести перпендикуляр к оси х на отметке 2,5. Отметку можно довольно точно сделать с помощью линейки. Тогда найдем, что при х = 2,5 у равно 7,5, однако если нам необходимо найти значение у при х равном 2,76, то графический способ задания функции не будет достаточно точным, т.к. линейка не дает возможности для столь точного замера.
Достоинства этого способа задания функций заключаются в легкости и целостности восприятия, в непрерывности изменения аргумента; недостатком является уменьшение степени точности и сложность получения точных значений.
3. Аналитический способ состоит в задании функции одной или несколькими формулами. Основным достоинством этого способа является высокая точность определения функции от интересующего аргумента, а недостатком является затрата времени на проведение дополнительных математических операций.
Функцию можно задать с помощью математической формулы y=x 2 , тогда если х равно 2, то у равно 4, возводим х в квадрат.
4. Словесный способ состоит в задании функции обычным языком, т.е. словами. При этом необходимо дать входные, выходные значения и соответствие между ними.
Словесно можно задать функцию (задачу), принимающуюся в виде натурального аргумента х с соответствующим значением суммы цифр, из которых состоит значение у. Поясняем: если х равно 4, то у равно 4, а если х равно 358, то у равен сумме 3 + 5 + 8, т. е 16. Далее аналогично.
5. Рекурсивный способ состоит в задании функции через саму себя, при этом значения функции определяются через другие ее же значения. Такой способ задания функции используется в задании множеств и рядов.
При разложении числа Эйлера задается функцией:
Ее сокращение приведено ниже:
При прямом расчёте возникает бесконечная рекурсия, но можно доказать, что значение f(n) при возрастании n стремится к единице (поэтому, несмотря на бесконечность ряда, значение числа Эйлера конечно). Для приближённого вычисления значения e достаточно искусственно ограничить глубину рекурсии некоторым наперёд заданным числом и по достижении его использовать вместо f(n) единицу.
Источник
Определение функции. Способы задания функции.
Что значить задать функцию? Какими способами можно задать функцию? Что такое определение функции?
Задать функцию — это значит указать правило, при задании любого значения аргумента x вы найдете значение функции y.
Функция y=f(x) – зависимость переменной y от переменной x. Когда задаем значение аргумента x, получаем единственное значение функции y.
Способы задания функции.
В данной статье рассмотрим 3 способа задания функции. На самом деле их больше, в школьной программе чаще всего разбирают эти способы задания функции.
Аналитический способ задания функции.
Чаще всего в школьной программе правило задают в виде формулы y=f(x), x∈X или нескольких формул. Такой способ задания функции называется аналитическим.
Примеры аналитического задания функции:
Графический способ задания функции.
Также если по формуле построить график функции, то данный способ задания функции будет называться графическим. Не всегда вам будут давать график совместно с формулой. Иногда вам в заданиях будут давать только график функции, по которому вы должны будете найти определенные данные. По графику функции можно восстановить его формулу, но это не всегда легко сделать, все зависит от начерченного графика. В школьной программе вам будут задавать графики, по которым вы сможете рассчитать формулу.
Примеры, графического задания функции:


Табличный способ задания функции.
Следующий способ задания функции применяется чаще всего на практике называется табличный.
Все данные представлены в виде таблице. У этого способа имеется конечное множество значений аргумента. Такими таблицами вы уже пользовались в алгебре, например, таблица квадратов, таблица корней и т.д.
Примеры, табличного задания функции:
x | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 |
y | 1 | 4 | 9 | 16 | 25 | 36 | 49 | 64 | 81 |
Рассмотрим примеры по теме «Способы задания функции»:
Пример №1:
Является ли графическим заданием какой-либо функции фигура?
Сколько бы мы не проводили вертикальных линий, всегда будет одно пересечение с графиком. Следовательно, изображенная фигура является графиком функции.
Пример №2:
Является ли графическим заданием какой-либо функции фигура?
Сколько бы мы не проводили вертикальных линий, всегда будет одно пересечение с графиком. Следовательно, изображенная фигура является графиком функции.
Пример №3:
Является ли графическим заданием какой-либо функции фигура?
При проведении вертикальных линий у нас имеется два пересечения. То есть у одной вертикальной линии два пересечения с фигурой. По определению переменной x должно соответствовать только одно значение переменной y, а у нас два пересечения фигуры. Следовательно, данная фигура не является графиком функции.
Источник
Способы задания функции
Определение сущности функции, областей ее определение и значения. Особенности аналитического и табличного способов задания функций. Рассмотрение основных свойств и графического отражения постоянной, линейной, степенной, обратной, сложной функций.
Рубрика | Математика |
Вид | доклад |
Язык | русский |
Дата добавления | 23.05.2015 |
Размер файла | 16,3 K |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Размещено на http://www.allbest.ru/
на тему: Способы задания функции
Выполнила: Ковалёва Юлия
211 группа «Лечебное дело»
Функция — одно из основных математических и общенаучных понятий. Оно сыграло и поныне играет большую роль в познании реального мира.
Идея функциональной зависимости восходит к древности. Ее содержание обнаруживается уже в первых математически выраженных соотношениях между величинами, в первых правилах действий над числами. В первых формулах для нахождения площади и объема тех или иных фигур. Так, вавилонские ученые (4-5тыс.лет назад) пусть несознательно, установили, что площадь круга является функцией от его радиуса посредством нахождения грубо приближенной формулы: S=3r 2 . Примерами табличного задания функции могут служить астрономические таблицы вавилонян, древних греков и индийцев, а примерами словесного задания функции — теорема о постоянстве отношения площадей круга и квадрата на его диаметре или античные определения конических сечений, причем сами эти кривые выступали в качестве геометрических образов соответствующей зависимости.
1. Функция и её свойства
Функция- зависимость переменной у от переменной x, если каждому значению х соответствует единственное значение у.
Переменная х- независимая переменная или аргумент.
Переменная у- зависимая переменная
Значение функции- значение у, соответствующее заданному значению х.
Область определения функции- все значения, которые принимает независимая переменная.
Область значений функции (множество значений)- все значения, которые принимает функция.
Функция является четной- если для любого х из области определения функции выполняется равенство f(x)=f(-x)
Функция является нечетной- если для любого х из области определения функции выполняется равенство f(-x)=-f(x)
2. Способы задания функции
Чтобы задать функцию, нужно указать способ, с помощью которого для каждого значения аргумента можно найти соответствующее значение функции. Наиболее употребительным является способ задания функции с помощью формулы у=f(x), где f(x)- с переменной х. В таком случае говорят, что функция задана формулой или что функция задана аналитически.
На практике часто используется табличный способ задания функции. При этом способе приводится таблица, указывающая значения функции для имеющихся в таблице значений аргумента. Примерами табличного задания функции являются таблица квадратов, таблица кубов.
3. Виды функций и их свойства
1) Постоянная функция- функция, заданная формулой у=b, где b-некоторое число. Графиком постоянной функции у=b является прямая, параллельная оси абсцисс и проходящая через точку (0;b) на оси ординат
2) Прямая пропорциональность- функция, заданная формулой у=kx, где к№0. Число k называется коэффициентом пропорциональности.
Cвойства функции y=kx:
1. Область определения функции- множество всех действительных чисел
2. y=kx — нечетная функция
3. При k>0 функция возрастает, а при k 0 функция возрастает, а при k 0, то функция убывает на промежутке (0;+Ґ) и на промежутке (-Ґ;0). Если k 2
1. Область определения- вся числовая прямая
3. На промежутке [0;+Ґ) функция возрастает
4. На промежутке (-Ґ;0] функция убывает
Графиком функции является парабола.
1. Область определения- вся числовая прямая
3. Функция возрастает на всей числовой прямой
Графиком функции является кубическая парабола
7)Степенная функция с натуральным показателем- функция, заданная формулой
y=x n , где n— натуральное число. При n=1 получаем функцию
y=x, ее свойства рассмотрены в п.2. При n=2;3 получаем функции y=x 2 ;
y=x 3 . Их свойства рассмотрены выше.
Пусть n- произвольное четное число, большее двух: 4,6,8. В этом случае функция
y=x n обладает теми же свойствами, что и функция y=x 2 .
График функции напоминает параболу y=x 2 , только ветви графика при |х|>1 тем круче идут вверх, чем больше n, а при |х| n обладает теми же свойствами, что и функция y=x
График функции напоминает кубическую параболу.
8)Степенная функция с целым отрицательным показателем- функция, заданная формулой y=x -n , где n— натуральное число.
При n=1 получаем y=1/х, свойства этой функции рассмотрены в п.4.
Пусть n- нечетное число, большее единицы: 3,5,7. В этом случае функция y=x -n обладает в основном теми же свойствами, что и функция y=1/х.
Пусть n- четное число, например n=2.
Свойства функции y=x -2 :
1. Функция определена при всех x№0
3. Функция убывает на (0;+Ґ) и возрастает на (-Ґ;0).
Теми же свойствами обладают любые функции при четном n, большем двух.
1. Область определения — луч [0;+Ґ).
2. Функция y=Цх — общего вида
3. Функция возрастает на луче [0;+Ґ).
1. Область определения- вся числовая прямая
3. Функция возрастает на всей числовой прямой.
При четном n функция обладает теми же свойствами, что и функция y=Цх. При нечетном n функция y= n Цх обладает теми же свойствами, что и функция y= 3 Цх.
12)Степенная функция с положительным дробным показателем- функция, заданная формулой y=x r , где r— положительная несократимая дробь.
1. Область определения- луч [0;+Ґ).
2. Функция общего вида
3. Функция возрастает на [0;+Ґ).
На рисунке изображен график функции y=x 5/2 . Он заключен между графиками функций y=x 2 и y=x 3 , заданных на промежутке [0;+Ґ).Подобный вид имеет любой график функции вида y=x r , где r>1.
На рисунке изображен график функции y=x 2/3 . Подобный вид имеет график любой степенной функции y=x r , где 0 -r , где r— положительная несократимая дробь.
1. Обл. определения -промежуток (0;+Ґ)
2. Функция общего вида
3. Функция убывает на (0;+Ґ)
Если функция y=f(x) такова, что для любого ее значения yo уравнение f(x)=yo имеет относительно х единственный корень, то говорят, что функция f обратима.
Если функция y=f(x) определена и возрастает (убывает) на промежутке Х и областью ее значений является промежуток Y, то у нее существует обратная функция, причем обратная функция определена и возрастает(убывает) на Y.
Таким образом, чтобы построить график функции, обратной к функции y=f(x), надо график функции y=f(x) подвергнуть преобразованию симметрии относительно прямой y=x.
15)Сложная функция- функция, аргументом которой является другая любая функция.
Возьмем, к примеру, функцию y=x+4. Подставим в аргумент функцию y=x+2. функция графический аналитический табличный
Получается: y(x+2)=x+2+4=x+6. Это и будет являться сложной функцией.
Размещено на Allbest.ru
Подобные документы
Понятие и основные свойства обратной функции. Нахождение функции, обратной данной. Область определения функции. Обратимость монотонной функции. Построение графиков функций и определение их свойств. Симметричность графиков функций относительно прямой у=х.
презентация [98,6 K], добавлен 18.01.2015
Понятие функции в древнем мире: Египет, Вавилон, Греция. Графическое изображение зависимостей, история возникновения. Вклад в развитие графиков функций Рене Декартом. Определение функций: понятие и способы задания. Методы построения графиков функций.
реферат [3,5 M], добавлен 09.05.2009
Определение коэффициентов элементарных функций: линейной, показательной, степенной, гиперболической, дробно-линейной, дробно-рациональной. Использование метода наименьших квадратов. Приближённые математические модели в виде приближённых функций.
лабораторная работа [253,6 K], добавлен 05.01.2015
Описание сущности функции, которая была введена немецким математиком П.В. Дирихле как пример функции, свободной от аналитического задания значения. Характеристика и описание ряда ее свойств и области определения методами математического анализа.
курсовая работа [44,8 K], добавлен 23.11.2011
Классификация основных элементарных функций: степенные, показательные, логарифмические, тригонометрические и обратные тригонометрические. Определение и простейшие свойства линейной и квадратичной функции. Понятие обратной пропорциональной зависимости.
презентация [1,0 M], добавлен 29.10.2015
Источник