Снятие никелевого покрытия с латуни химическим способом

Удаление дефектных гальванических покрытий.

Необходимость удаления гальванических покрытий возникает при нарушении качества покрытия (См. «Неполадки в гальванике») в силу каких-либо обстоятельств. Главной причиной процесса удаления покрытия является желание восстановить первоначальное состояние детали, изготовление которой связано с высокими трудозатратами или высокой стоимостью материала, из которого она сделана.

Процесс удаления покрытия должен быть максимально щадящим и направлен на удаление покрытия без каких-либо последствий для подложки, поэтому в травильные растворы добавляют ингибиторы.

Процесс удаления гальванических покрытий может быть химическим (без воздействия тока) и электрохимическим (когда деталь является анодом). Химический процесс, как правило, протекает более медленно, но равномерно, а электрохимический – анодный более быстро, но требует постоянного контроля.

Наилучшие результаты по снятию покрытия достигаются электрохимически – при анодной обработке в комплексных цианистых электролитах, а при химическом травлении – в растворах с органическими катализаторами. Однако, из-за высокой токсичности и агрессивности эти растворы не нашли широкого применения в производстве. Чаще технологи останавливают свой выбор на простых щелочных растворах или смесях кислот.

Наиболее популярными являются растворы для снятия покрытий:

1) хромового покрытия с поверхности меди, никеля и стали – 10–30 % раствор соляной кислоты при температуре 30–40 0 С;

2) никелевого покрытия со стали – концентрированная азотная кислота;

3) медного покрытия со стали – 500 г/л хромового ангидрида с 50 г/л серной кислоты при температуре 20 0 С;

4) кадмиевого покрытия со стали – концентрированная соляная кислота, в качестве ингибитора можно добавить 15 г/л хлористой сурьмы;

5) свинцового покрытия с меди – концентрированная азотная кислота с 300 г/л фторида аммония и 125 г/л пероксида водорода при температуре 20 0 С.

Составы электролитов для анодного стравливания гальванических покрытий:

1) хромового покрытия с никеля – 50 г/л углекислого натрия при ДА = 5 – 10 А/дм 2 ;

2) сплава олово – висмут с меди и со стали – стандартный электролит эл/химического обезжиривания при ДА = 5 – 10 А/дм 2 и температуре 40 0 С;

3) никелевого покрытия со стали – 60% раствор серной кислоты (в объемном соотношении) с 30 г/л глицерина, ДА = 10 – 15 А/дм 2 , температура 20 0 С;

4) медного с цинка – 220 г/л хромового ангидрида с 2 г/л серной кислоты, ДА = 10 А/дм 2 , температура 20 0 С.

К сожалению, не всегда возможно удалить гальваническое покрытие без повреждения основы. Например, изделия из цинковых сплавов с покрытием медь-никель-хром не поддаются реставрации, часто повторное использование восстановленного изделия экономически становится невыгодно, так как качество самой детали ухудшаются.

Тем не менее, если что-то очень эксклюзивное необходимо спасти – пробуйте, экспериментируйте, за услугами обращайтесь к нам, всегда поможем.

Источник

Удаление гальванических покрытий

Вы здесь

Удаление гальванических покрытий
Для снятия гальванического покрытия пригоден только такой способ, который, удаляя покрытие, не повреждает основной металл или металл подслоя. По этому каждый способ снятия предназначен для удаления только определенного металла покрытия без снятия основного металла изделия.

Снятие никелевого покрытия со стали и меди
Для снятия никелевого покрытия со стали в литературе предлагается несколько химических и электрохимических способов, однако при применении их значительно растравливается основной металл. Это вынуждает после снятия покрытия шлифовать детали на накатных кругах абразивом, что, однако, не всегда возможно, ибо искажает размеры и форму предмета
Очень хорошие результаты дает способ, анодного активирования стали пассивированием. Принцип заключается в том, что для анодной обработки выбирается такая концентрация электролита (серной кислоты) и такой режим (температура и анодная плотность тока), при которых сталь легко и_ быстро пассивируется, а никель не пассивируется» ни при каких режимах, которые могли бы случайно создаться в производстве при снятии никелевого покрытия. Эти условия таковы.
Электролитом служит серная кислота марки «химически чистая» или «аккумуляторная». Очень важно отсутствие или ничтожное содержание в ней хлор-иона. Техническая серная кислота непригодна. Никаких добавок в электролите не требуется.
Концентрация серной кислоты не должна превышать 40 % массовых. Предпочтительно применять 30 %-ную кислоту, так как при этой концентрации раствор обладает наивысшей электропроводностью, что выгодно в отношении экономии расхода электроэнергии, малого требуемого напряжения источника тока (достаточно.. 6 В), повышенной рассеивающей способности, возможности работы при большой плотности тока (при которой нагрев джоулевой теплотой невелик вследствие малого омического сопротивления раствора), и значительной растворимости сернокислого железа в кислоте такой концентрации, Благодаря чему оно не выпадает в осадок и не мешает процессу.
Температура раствора должна быть комнатной (18— 20’С), допустимо превышение до 30 °С. При высоких температурах железо не пассивируется.
Плотность тока должна быть в химически чистой кислоте не ниже 5—7 А/дмг, а в аккумуляторной кислоте — не ниже 10—15 А/дма. Верхний предел плотности тока ограничен только мощностью источника тока и опасностью разогрева электролита джоулевой теплотой (объемная плотность тока не должна превышать 0,5—0,75 А/л). Как видим, это те же условия, что и для анодной активации с пассивированием, только верхний предел плотности тока не ограничен необходимостью обеспе¬чить некоторую заметную продолжительность активного периода, как при активировании.
По мере того как никелевое покрытие снимается и обнажается железо, на оголенных участках начинается выделение кислорода и их пассивирование, поэтому перетравливания детали опасаться не приходится Заметить полноту снятия никеля иногда удается по бурному газовыделению, но чаще приходится периодически вынимать деталь для осмотра, что никаких существенных нарушений процесса не вызывает.
Подвешивать детали можно на железной или медной проволоке, удобнее каждое изделие завешивать отдельно Легкие изделия надо завешивать на пружинящем прочном контактном крючке. Групповые стальные подвесочные приспособления (рамки или елочки) могут быть плохо изолированы. В этом случае они сами пассивируются. Из-за газообразования на них нельзя рассмотреть, идет ли газообразование по всей поверхности детали, т. е. полностью ли снято с нее покрытие. К тому же при пользовании подвесочными приспособлениями, вмещающими несколько деталей, нет возможности извлекать отдельные детали по мере их готовности, хотя весьма значительные передержки готовых деталей под током (порядка до получаса) допустимы.
Поверхность стальных деталей после снятия никеля получается несколько хуже, чем после анодной акти¬вации с пассивированием, однако шлифования на накатных фугах с абразивом никогда не требуется, вполне достаточно легкого глянцевания на войлочном или тряпочном круге с пастой. Очень часто поверхность деталей получается такой же, как после анодной активации с пассивированием, и их можно после обычной промывки сразу же завешивать в ванну для повторного никелирования.
Интересно, что и анодной активации, и снятию никеля не вредит весьма значительное накопление в ванне никеля и железа — до интенсивио-зеленого цвета раствора. Это позволяет иногда пользоваться одной и той же ванной для обоих процессов, но при большой загрузке лучше иметь отдельную ванну для каждого процесса.
С меди и медного подслоя никель снимается тем же способом, который описан для его снятия со стали; медь тоже пассивируется на аноде в серной кислоте, только при значительно более высокой плотности тока — при работе в аккумуляторной серной кислоте плотность тока должна быть не меньше 30—35 А/дма. Концентрация кислоты 30 % и температура комнатная (18—20 °С)
Снять никель с латуни, не повредив ее, не удается ни при каком режиме. Латунь сильно растравливается.
Снятие медного покрытия со стали
Медное покрытие снимается со стали без тока и без нагрева в водном растворе следующего состава (г/л):
Хромовый ангидрид СЮ3. 300
Аммоний сернокислый (NH4)2SOj. 120
Концентрация хромового ангидрида не должна быть существенно меньше 300 г/л, так как в более слабых растворах иногда наблюдается едва заметное подтравливание стали. При концентрации хромового ангидрида 300 г/л и выше растворения железа обнаружено не было. Замена часто рекомендуемой добавки серной кислоты на сернокислый аммоний сильно ускоряет процесс снятия меди, вероятно, за счет образования комплекса меди в ионом аммония. Хотя процесс растворения меди и так протекает быстро, но его можно еще ускорить, если при обработке раствором протирать изделие тряпкой или паклей.
В литературе по гальванотехнике иногда рекомендуется проводить обработку этим раствором под током на аноде. Это вряд ли целесообразно, потому что в растворе хромового ангидрида сталь на аноде весьма заметно растворяется.
Снятие хромового покрытия со стали и меди без тока и под током
Снятие хромового покрытия со стали и меди без тока. Снятие хромового покрытия осуществляется в растворе соляной кислоты 10—50 % (1 часть соляной кислоты с содержанием хлористого водорода 38 %, разбавленная 9—10 частями воды) с добавкой ингибитора травления, например, КС 1—3 %. При снятии хрома с меди ингибитор не нужен, но раствор соляной кислоты не должен содержать никаких легко восстанавливающихся ионов, в первую очередь — ионов трехвалентного железа; поэтому не следует для снятия хрома е меди применять раствор соляной кислоты, в котором снимали хром со стали, так как железо, растворившееся в виде двухвалентных ионов, легко окисляется воздухом до трехвалентного, а это последнее содействует растворению меди в соляной кислоте вследствие окислительного действия своих ионов.

Читайте также:  Механический способ очистки газов

Снятие хромового покрытия со стали под током
Снятие хрома со стали производится в 10 %-ном растворе едкого натра NaOH прн комнатной температуре, на аноде, при плотности тока 10—15 А/дмг. Несмотря на сравнительно небольшую плотность тока снятие происходит довольно быстро, так как хром растворяется в виде трехвалентных ионов и выход по току при этом близок к 100 %. После снятия хрома на стали иногда остается тончайшая темная пленка окислов, легко удаляемая в обычной ванне активирования, без опасности искажения размеров.

Снятие хромового покрытия со стали и алюминия в хромировочной ванне.
Если почему-либо нельзя снять хром с изделия в щелочной ванне, то можно сделать это в производственной хромировочной ванне, завесив изделие на анод и использовав в качестве катода стальной лист. Таким же образом можно снять хром и с алюминия (в щелочной ванне алюминий был бы растравлен), хотя для алюминия лучше, но не обязательно, применить электролит а концентрацией хромового ангидрида 100—150 г/л.
Однако при частом использовании хромировочной ванны, для таких целей лучше установить отдельную ванну, потому что хром с анода переходит в раствор в виде трехвалентного, что потребует частых перерывов в эксплуатации производственной ванны для ее проработки.

Источник

Снятие никелевого покрытия с латуни химическим способом

Обычно этот процесс необходим для удаления некачественных металлических пленок или для очистки какого-либо реставрируемого металлического изделия.

Все нижеприведенные растворы работают. быстрее при повышенных температурах.

Составы растворов для удаления металлических покрытий частями (по объему)

Для удаления никеля со стали

Азотная кислота — 2, серная кислота-1, сернокислое железо (окисное) — 5. 10.
Температура смеси — 20.С.

Азотная кислота — 8, вода — 2.
Температура раствора — 20 С.

Читайте также:  Выполнение сборок ручным способом

Азотная кислота- 7, уксусная кислота (ледяная) — 3.
Температура смеси — 30.С.

Для удаления никеля с меди и ее сплавов (г/л)

Нитробензойная кислота — 40. 75, серная кислота- 180.
Температура раствора — 80. 90.С.

Нитробензойная кислота — 35, этилендиамин — 65, тиомочевина — 5. 7.
Температура раствора — 20. 80.С.

Для удаления никеля с алюминия и его сплавов применяют техническую азотную кислоту.
Температура кислоты — 5б.С.

Для удаления меди со стали

Нитробензойная кислота — 90, диэтилентриамин — 150, хлористый аммоний — 50.
Температура раствора — 80.С.

Пиросернокислый натрий — 70, аммиак (25%-ный раствор) — 330.
Температура раствора — .60..

Серная кислота — 50, хромовый ангидрид — 500.
Температура раствора — 20.С.

Для удаления меди с алюминия и его сплавов (с цинкатной обработкой)

Хромовый ангидрид — 480, серная. кислота — 40.
Температура раствора — 20. 70.С.

Техническая азотная кислота.
Температура раствора — 50.С.

Для удаление серебра со стали

Азотная кислота — 50, серная кислота — 850.
Температура — 80.С.

Азотная кислота техническая.
Температура — 20.С.

Серебро с меди и ее сплавов удаляют азотной кислотой технической.
Температура — 20 С.

Хром со стали снимают раствором едкого натра (200 г/л).
Температура раствора — 20.С.

Хром с меди и ее сплавов удаляют 10%-ной соляной кислотой.
Температура раствора — 20.С.

Цинк со стали снимают 10%-ной соляной кислотой — 200 г/л.
Температура раствора — 20.С.

Цинк с меди и ее сплавов удаляют концентрированной серной кислотой.
Температура — 20 С.

Кадмий и цинк с любых металлов снимают раствором азотнокислого алюминия (120 г/л).
Температура раствора — 20 С. Олово со стали удаляют раствором, содержащим гидроксид натрия — 120, нитробензойную кислоту — 30. Температура раствора — 20 С.

Читайте также:  Сообщение по информатике способы кодирования информации

Олово с меди и ее сплавов Снимают в растворе хлорного железа — 75. 100, сернокислой меди — 135. 160, уксусной кислоты (ледяная) — 175.
Температура раствора — 20 С.

Все перечисленные способы сожрут сталь однозначно!
Без разрушения стали самое реальное — снять покрытие электролизом.
Берется железная труба диаметром и длиной такими, чтобы в нее свободно (не касаясь стенок) входила сабля. Один конец трубы глушится герметичной заглушкой. Внутрь подвешивается сабля. Сабля и труба должны быть электроизолированы (не касаться) друг друга. Внутрь трубы заливается электролит. Подсоединяется (лучше через ЛАТР) зарядное устройство аккумуляторов автомобиля к сабле «+», к трубе «-«.
Для снятия никеля со стали наиболее легкодоступные электролиты в домашних условиях:
1. Натрий азотнокислый — 540 г/л t=90*C плотность тока — 10 A/кв.дм
2. Борная кислота 30 г/л
хромовый ангидрид 240 г/л
t=85*C плотность тока — 1 A/кв.дм
3. Натрий азотнокислый — 285 г/л
Карбонат натрия — 3 г/л
Хлорид натрия — 2,1 г/л
плотность тока — 15 A/кв.дм

Натрий азотнокислый — удобрение, магазины для садоводов.
Борная кислота — аптеки, радиорынки(применяется как флюс).
Хромовый ангидрид — можно найти поиском в инете.
Карбонат натрия — сода.
Хлорид натрия — поваренная соль.
Если электролиз вести при меньшей температуре, время снятия покрытий увеличивается.

Источник

Оцените статью
Разные способы