Сколько существует способов случайного отбора газет для размещения рекламы

Задачи к теме 1 «Комбинаторика»

1. Для разгрузки поступивших товаров менеджеру требуется выделить 4 из 15 имеющихся рабочих. Сколькими способами можно это сделать, осуществляя отбор в случайном порядке?

2. Сколько существует способов составления в случайном порядке списка из 5 кандидатов для выбора на руководящую должность?

3. Руководством риэлтерской фирмы принято решение о необходимости рекламы нового вида услуг. По расчетам отдела рекламы, выделенных средств хватит для того, чтобы поместить объявления только в 7 из 12 городских газет. Сколько существует способов случайного отбора газет для размещения рекламы?

4. Менеджер по персоналу рассматривает кандидатуры 7 человек, подавших заявления о приеме на работу на должность бухгалтера. Сколько существует способов приглашения кандидатов на собеседование в случайном порядке?

5. Расписание одного дня занятий на II курсе состоит из трех пар. В течение семестра студенты изучают 12 дисциплин. Сколько существует вариантов составления расписания занятий на один из дней недели, если в течение дня проводятся занятия по разным дисциплинам?

6. Покупая карточку лотереи “Спортлото”, игрок должен зачеркнуть 5 из 36 возможных чисел от 1 до 36. Если при розыгрыше тиража лотереи он угадает все 5 чисел, то имеет шанс выиграть значительную сумму денег. Сколько возможных комбинаций можно составить из 36 по 5, если порядок чисел безразличен?

7. а) Сколько различных «слов», каждое из которых содержит 6 букв, можно составить из слова «экспертиза»? б) Сколько различных «слов», каждое из которых содержит 10 букв, можно составить из слова «экспертиза»?

8. Распределение пар в первом круге Уимблдонского турнира проводится методом жеребьевки. Сколько комбинаций пар возможно составить, если в турнире участвуют 20 теннисисток?

9. Администрация города объявила тендер на строительство медицинского центра. В конкурсную комиссию поступило 8 запечатанных пакетов со сметами от различных строительных фирм. Сколько существует способов очередности вскрытия пакетов, если они вскрываются конкурсной комиссией в случайном порядке после окончания срока подачи заявок?

10. Для обнаружения нефти на участке необходимо пробурить до 11 скважин. Однако, компания имеет средства для бурения только 6 скважин. Сколько способов отбора шести различных скважин у компании?

11. В Российской Федерации номерной знак автомобиля каждого региона состоит из трех букв и трех цифр. Чему равно общее число возможных номерных знаков региона, если, для его составления используется 12 букв русского алфавита и 10 цифр. Рассмотрите два случая, когда: а) цифры и буквы в номере не повторяются; б) если повторяются?

12. В финале конкурса телевизионных программ по трем номинациям представлены 9 региональных телерадиокомпаний. Сколько существует вариантов распределения призов, если каждая телерадиокомпания может получить призы по нескольким номинациям и по каждой номинации установлены: а) одинаковые призы? б) различные призы?

13. PIN – код пластиковой карты состоит из 4 цифр. Сколько всевозможных комбинаций PIN – кода существует, если: а) цифры в коде не повторяются? б) повторяются?

14. Издательство планирует выпустить в текущем году 6 различных учебников по статистике. Каким количеством способов можно выбрать 30 экземляров, если в библиотеке университета должны быть представлены все виды изданных учебников по статистике?

Читайте также:  Способ передачи сибирской язвы от больного животного

15. Сколько различных «слов» можно составить из букв слова «колокол»?

16. Код банковского сейфа состоит из 8 цифр. Сколько можно составить различных кодовых комбинаций, если: а) цифры не повторяются? б) цифры повторяются?

17. В мореплавании принято давать сигналы, используя разноцветные флаги. Сколько сигналов можно составить, используя одновременно 8 флагов, из которых 1 красный, 2 синих, 3 зелёных и 2 белых?

18. Фирма планирует приобрести путевки для отдыха 25 сотрудников. Сколько существует вариантов приобретения путевок, если: а) контракт будет заключен с четырьмя пансионатами? б) с двумя пансионатами?

19. Компьютерный ключ к антивирусной программе состоит из 9 цифр. Сколько существует различных вариантов компьютерных ключей, если: а) цифры ключа не повторяются? б) цифры ключа повторяются?

20. В парфюмерном магазине имеется 5 различных косметических наборов. Фирме необходимо приобрести 18 подарков к празднику. Сколько в таком случае существует вариантов выбора подарков?

Источник

Сколько существует способов случайного отбора газет для размещения рекламы

1. Составить закон распределения случайной величины, выражающей число попаданий в мишень при четырех выстрелах, если вероятность попадания при каждом выстреле равна 0,3. Вычислить ее математическое ожидание и дисперсию, пользуясь только их определениями, а результаты проверить по формулам этих характеристик для случайной величины, распределенной по биномиальному закону.

2. Случайная величина Х равномерно распределена. Ее плотность вероятности φ(x) = A, если a ≤ x ≤ b и φ(х) = 0, если х b. Определить коэффициент А.

3. Результаты измерения расстояния между двумя населенными пунктами подчинены нормальному закону с параметрами а – 16 км, σ – 100 м. Найти вероятность того, что расстояние между этими пунктами: а) не меньше 15,8; б) не более 16,25км.; в) от 15,75 до 16,3 км

4. Сколько следует проверить деталей, чтобы, чтобы с вероятностью, не меньшей 0,98, можно было ожидать, что абсолютная величина отклонения частности годных деталей от вероятности детали быть годной равной 0,95, не превысит 0,01.( применить неравенство Чебышева.)

5. Из поступивших на инкубаторную станцию 40000 яиц была образована выборочная совокупность из 400 яиц. Из них вывелось 304 цыпленка. Найти вероятность того, что по всей совокупности удельный вес яиц, из которых выведутся цыплята, отличается от соответствующей величины в выборке не более чем на 0,05 (по абсолютной величине) если выборка: а) повторная; б) бесповторная. Всего сообщений: 5 | Присоединился: апрель 2011 | Отправлено: 8 мая 2011 21:20 | IP

irenvoxelap



Новичок

помогите, пожалуйста решить. Очень надо. Спасибо.

В группе учится 12 человек, из них 10 юношей и 2 девушки. На субботник отбирают 5 человек. Какова вероятность того, что на субботнике будут участвовать обе девушки?

Источник

Сочетания с повторениями

Сочетание с повторениями из n элементов по m(m Î n) элементов может содержать любой элемент сколько угодно раз от 1 до m включительно, или не содержать его совсем, то есть каждое сочетание из n элементов по m элементов может состоять не только из m различных элементов, но из m каких угодно и как угодно повторяющихся элементов.

Следует отметить, что если, например, два соединения по m элементов отличаются друг от друга только порядком расположения элементов, то они не считаются различными сочетаниями.

Число сочетаний с повторениями из n элементов по m будем обозначать символом Формула для вычисления числа сочетаний с повторениями:

(1.6)

Замечание: m может быть и больше n.

Пример 1.4. Сколькими способами можно выбрать 6 пирожных в кондитерской, где есть 4 разных сорта пирожных?

,

Ответ. Существует 84 различных способа выбора пирожных.

Перестановки

Перестановками из n элементов называются такие соединения, каждое из которых содержит все n элементов, и которые отличаются друг от друга лишь порядком расположения элементов.

Число перестановок их n элементов обозначается символом Рn, это то же самое, что число размещений из nэлементов по nв каждом, поэтому

(1.7)

Пример 1.5. Менеджер ежедневно просматривает 6 изданий экономического содержания. Если порядок просмотра изданий случаен, то сколько существует способов его осуществления?

Решение.Способы просмотра изданий различаются только порядком, так как число, а, значит, и состав изданий при каждом способе — неизменны. Следовательно, при решении этой задачи необходимо рассчитать число перестановок.

По условию задачи n = 6.

.

Ответ.Издания можно просмотреть издания 720 способами.

Перестановки с повторениями

Число перестановок с повторениями выражается при помощи формулы:

, (1.8)

где числа повторений.

Пример 1.6. Каким числом способов можно разделить m + n + s предметов на три группы, чтобы в одной группе было m предметов, в другой — n предметов, в третьей — s предметов?

Ответ:

Правила комбинаторики

Правило суммы (принцип логического сложения) Если объект а может быть выбран m способами, а объект b может быть выбран другими n способами (не такими как а), то выбор элемента а или b из объединенной совокупности может быть осуществлен m+n способами.
Правило произведения (принцип логического умножения) Если объект а может быть выбран m способами и после каждого такого выбора объект b может быть выбран n способами, то выбор пары объектов а и b в указанном порядке может быть осуществлен m∙n способами.

Задачи к теме 1

1. Для разгрузки поступивших товаров менеджеру требуется выделить 4 из 15 имеющихся рабочих. Сколькими способами можно это сделать, осуществляя отбор в случайном порядке?

2. Сколько существует способов составления в случайном порядке списка из 5 кандидатов для выбора на руководящую должность?

3. Руководством риэлтерской фирмы принято решение о необходимости рекламы нового вида услуг. По расчетам отдела рекламы, выделенных средств хватит для того, чтобы поместить объявления только в 7 из 12 городских газет. Сколько существует способов случайного отбора газет для размещения рекламы?

4. Менеджер по персоналу рассматривает кандидатуры 7 человек, подавших заявления о приеме на работу на должность бухгалтера. Сколько существует способов приглашения кандидатов на собеседование в случайном порядке?

5. Расписание одного дня занятий на II курсе состоит из трех пар. В течение семестра студенты изучают 12 дисциплин. Сколько существует вариантов составления расписания занятий на один из дней недели, если в течение дня проводятся занятия по разным дисциплинам?

6. Покупая карточку лотереи “Спортлото”, игрок должен зачеркнуть 5 из 36 возможных чисел от 1 до 36. Если при розыгрыше тиража лотереи он угадает все 5 чисел, то имеет шанс выиграть значительную сумму денег. Сколько возможных комбинаций можно составить из 36 по 5, если порядок чисел безразличен?

7. а) Сколько различных «слов», каждое из которых содержит 6 букв, можно составить из слова «экспертиза»? б) Сколько различных «слов», каждое из которых содержит 10 букв, можно составить из слова «экспертиза»?

8. Распределение пар в первом круге Уимблдонского турнира проводится методом жеребьевки. Сколько комбинаций пар возможно составить, если в турнире участвуют 20 теннисисток?

9. Администрация города объявила тендер на строительство медицинского центра. В конкурсную комиссию поступило 8 запечатанных пакетов со сметами от различных строительных фирм. Сколько существует способов очередности вскрытия пакетов, если они вскрываются конкурсной комиссией в случайном порядке после окончания срока подачи заявок?

10. Для обнаружения нефти на участке необходимо пробурить до 11 скважин. Однако, компания имеет средства для бурения только 6 скважин. Сколько способов отбора шести различных скважин у компании?

11. В Российской Федерации номерной знак автомобиля каждого региона состоит из трех букв и трех цифр. Чему равно общее число возможных номерных знаков региона, если, для его составления используется 12 букв русского алфавита и 10 цифр. Рассмотрите два случая, когда: а) цифры и буквы в номере не повторяются; б) если повторяются?

12. В финале конкурса телевизионных программ по трем номинациям представлены 9 региональных телерадиокомпаний. Сколько существует вариантов распределения призов, если каждая телерадиокомпания может получить призы по нескольким номинациям и по каждой номинации установлены: а) одинаковые призы? б) различные призы?

13. PIN – код пластиковой карты состоит из 4 цифр. Сколько всевозможных комбинаций PIN – кода существует, если: а) цифры в коде не повторяются? б) повторяются?

14. Издательство планирует выпустить в текущем году 6 различных учебников по статистике. Каким количеством способов можно выбрать 30 экземляров, если в библиотеке университета должны быть представлены все виды изданных учебников по статистике?

15. Сколько различных «слов» можно составить из букв слова «колокол»?

16. Код банковского сейфа состоит из 8 цифр. Сколько можно составить различных кодовых комбинаций, если: а) цифры не повторяются? б) цифры повторяются?

17. В мореплавании принято давать сигналы, используя разноцветные флаги. Сколько сигналов можно составить, используя одновременно 8 флагов, из которых 1 красный, 2 синих, 3 зелёных и 2 белых?

18. Фирма планирует приобрести путевки для отдыха 25 сотрудников. Сколько существует вариантов приобретения путевок, если: а) контракт будет заключен с четырьмя пансионатами? б) с двумя пансионатами?

19. Компьютерный ключ к антивирусной программе состоит из 9 цифр. Сколько существует различных вариантов компьютерных ключей, если: а) цифры ключа не повторяются? б) цифры ключа повторяются?

20. В парфюмерном магазине имеется 5 различных косметических наборов. Фирме необходимо приобрести 18 подарков к празднику. Сколько в таком случае существует вариантов выбора подарков?

Источник

Читайте также:  Способ устройства свайных фундаментов
Оцените статью
Разные способы