Различные способы доказательства теоремы Пифагора
учащаяся 9 «А» класса
Теорема Пифагора по праву считается самой важной в курсе геометрии и заслуживает пристального внимания. Она является основой решения множества геометрических задач, базой для изучения теоретического и практического курса геометрии в дальнейшем. Теорема окружена богатейшим историческим материалом, связанным с её появлением и способами доказательства. Изучение истории развития геометрии прививает любовь к данному предмету, способствует развитию познавательного интереса, общей культуры и творчества, а так же развивает навыки научно-исследовательской работы.
В результате поисковой деятельности была достигнута цель работы, заключающаяся в пополнении и обобщении знаний по доказательству теоремы Пифагора. Удалось найти и рассмотреть различные способы доказательства и углубить знания по теме, выйдя за страницы школьного учебника.
Собранный материал ещё больше убеждает в том, что теорема Пифагора является великой теоремой геометрии, имеет огромное теоретическое и практическое значение.
Введение. Историческая справка 5 Основная часть 8
3. Заключение 19
4. Используемая литература 20
1. ВВЕДЕНИЕ. ИСТОРИЧЕСКАЯ СПРАВКА.
Суть истины вся в том, что нам она — навечно,
Когда хоть раз в прозрении ее увидим свет,
И теорема Пифагора через столько лет
Для нас, как для него, бесспорна, безупречна.
На радостях богам был Пифагором дан обет:
За то, что мудрости коснулся бесконечной,
Он сто быков заклал, благодаря предвечных;
Моленья и хвалы вознес он жертве вслед.
С тех пор быки, когда учуят, тужась,
Что к новой истине людей опять подводит след,
Ревут остервенело, так что слушать мочи нет,
Такой в них Пифагор вселил навеки ужас.
Быкам, бессильным новой правде противостоять,
Что остается? — Лишь глаза закрыв, реветь, дрожать.
Неизвестно, каким способом доказывал Пифагор свою теорему. Несомненно лишь то, что он открыл ее под сильным влиянием египетской науки. Частный случай теоремы Пифагора — свойства треугольника со сторонами 3, 4 и 5 — был известен строителям пирамид задолго до рождения Пифагора, сам же он более 20 лет обучался у египетских жрецов. Сохранилась легенда, которая гласит, что, доказав свою знаменитую теорему, Пифагор принес богам в жертву быка, а по другим источникам, даже 100 быков. Это, однако, противоречит сведениям о моральных и религиозных воззрениях Пифагора. В литературных источниках можно прочитать, что он «запрещал даже убивать животных, а тем более ими кормиться, ибо животные имеют душу, как и мы». Пифагор питался только медом, хлебом, овощами и изредка рыбой. В связи со всем этим более правдоподобной можно считать следующую запись: «. и даже когда он открыл, что в прямоугольном треугольнике гипотенуза имеет соответствие с катетами, он принес в жертву быка, сделанного из пшеничного теста».
Популярность теоремы Пифагора столь велика, что ее доказательства встречаются даже в художественной литературе, например, в рассказе известного английского писателя Хаксли «Юный Архимед». Такое же Доказательство, но для частного случая равнобедренного прямоугольного треугольника приводится в диалоге Платона «Менон».
«Далеко-далеко, куда не летают даже самолеты, находится страна Геометрия. В этой необычной стране был один удивительный город — город Теорем. Однажды в этот город пришла красивая девочка по имени Гипотенуза. Она попробовала снять комнату, но куда бы она ни обращалась, ей всюду отказывали. Наконец она подошла к покосившемуся домику и постучала. Ей открыл мужчина, назвавший себя Прямым Углом, и он предложил Гипотенузе поселиться у него. Гипотенуза осталась в доме, в котором жили Прямой Угол и два его маленьких сына по имени Катеты. С тех пор жизнь в доме Прямого Угла пошла по-новому. На окошке гипотенуза посадила цветы, а в палисаднике развела красные розы. Дом принял форму прямоугольного треугольника. Обоим катетам Гипотенуза очень понравилась и они попросили ее остаться навсегда в их доме. Ло вечерам эта дружная семья собирается за семейным столом. Иногда Прямой Угол играет со своими детишками в прятки. Чаще всего искать приходится ему, а Гипотенуза прячется так искусно, что найти ее бывает очень трудно. Однажды во время игры Прямой Угол подметил интересное свойство: если ему удается найти катеты, то отыскать Гипотенузу не составляет труда. Так Прямой Угол пользуется этой закономерностью, надо сказать, очень успешно. На свойстве этого прямоугольного треугольника и основана теорема Пифагора.»
(Из книги А. Окунева «Спасибо за урок, дети»).
Шутливая формулировка теоремы:
Если дан нам треугольник
И притом с прямым углом,
То квадрат гипотенузы
Мы всегда легко найдем:
Катеты в квадрат возводим,
Сумму степеней находим –
И таким простым путем
К результату мы придем.
Изучая алгебру и начала анализа и геометрию в 10 классе, я убедилась в том, что кроме рассмотренного в 8 классе способа доказательства теоремы Пифагора существуют и другие способы доказательства. Представляю их на ваше обозрение.
2. ОСНОВНАЯ ЧАСТЬ.
Теорема. В прямоугольном треугольнике квадрат
гипотенузы равен сумме квадратов катетов.
Пользуясь свойствами площадей многоугольников, установим замечательное соотношение между гипотенузой и катетами прямоугольного треугольника.
Рассмотрим прямоугольный треугольник с катетами а, в и гипотенузой с (рис.1, а).
Докажем, что с²=а²+в².
Доказательство.
Достроим треугольник до квадрата со стороной а + в так, как показано на рис. 1, б. Площадь S этого квадрата равна (а + в)² . С другой стороны, этот квадрат составлен из четырех равных прямоугольных треугольников, площадь каждого из которых равна ½ав , и квадрата со стороной с, поэтому S= 4 * ½ав + с² =2ав + с².
Теорема доказана. 2 СПОСОБ.
После изучения темы «Подобные треугольники» я выяснила, что можно применить подобие треугольников к доказательству теоремы Пифагора. А именно, я воспользовалась утверждением о том, что катет прямоугольного треугольника есть среднее пропорциональное для гипотенузы и отрезка гипотенузы, заключённого между катетом и высотой, проведённой из вершины прямого угла.
Рассмотрим прямоугольный треугольник с прямым углом С, СD– высота (рис. 2). Докажем, что АС² +СВ² = АВ².
На основании утверждения о катете прямоугольного треугольника:
АС = , СВ =
.
Возведем в квадрат и сложим полученные равенства:
АС² = АВ * АD, СВ² = АВ * DВ;
АС² + СВ² = АВ * ( АD + DВ), где АD+DB=AB, тогда
Доказательство закончено.
3 СПОСОБ.
К доказательству теоремы Пифагора можно применить определение косинуса острого угла прямоугольного треугольника. Рассмотрим рис. 3.
Пусть АВС – данный прямоугольный треугольник с прямым углом С. Проведем высоту СD из вершины прямого угла С.
По определению косинуса угла:
cos А = АD/АС = АС/АВ. Отсюда АВ * АD = АС²
cos В = ВD/ВС = ВС/АВ.
Отсюда АВ * ВD = ВС² .
Складывая полученные равенства почленно и замечая, что АD + DВ = АВ, получим:
Доказательство закончено.
4 СПОСОБ.
Изучив тему «Соотношения между сторонами и углами прямоугольного треугольника», я думаю, что теорему Пифагора можно доказать ещё одним способом.
Рассмотрим прямоугольный треугольник с катетами а, в и гипотенузой с. (рис. 4).
sinВ= в/с ; cosВ= a/с, то, возведя в квадрат полученные равенства, получим:
Сложив их, получим:
1= (в²+ а²) / с², следовательно,
Данное доказательство основано на разрезании квадратов, построенных на катетах (рис. 5), и укладывании полученных частей на квадрате, построенном на гипотенузе.
Для доказательства на катете ВС строим BCD ABC (рис.6 ). Мы знаем, что площади подобных фигур относятся как квадраты их сходственных линейных размеров:
Вычитая из первого равенства второе, получим
,
,
с2 = а2 + b2.
ABС,
= 90°, ВС = а, АС=b, АВ = с.
Пусть катет b а. Продолжим отрезок СВ за точку В и построим треугольник BMD так, чтобы точки М и А лежали по одну сторону от прямой CD и, кроме того, BD = b, BDM = 90°, DM = a, тогда BMD =
ABC по двум сторонам и углу между ними. Точки А и М соединим отрезками AM. Имеем MD CD и AC CD, значит, прямая АС параллельна прямой MD. Так как MD
Источник
О теореме Пифагора и способах ее доказательства
Статья опубликована при поддержке компании «Мастер перевода». Хотите качественный и быстрый перевод? Обратитесь в бюро нотариальных переводов «Мастер перевода». Качество услуг гарантировано постоянными клиентами бюро, среди которых множество именитых российских компаний. Посетите официальный сайт компании www.masterperevoda.ru и ознакомьтесь подробнее с предоставляемыми им услугами.
Площадь квадрата, построенного на гипотенузе прямоугольного треугольника, равна сумме площадей квадратов, построенных на его катетах.
Это одна из самых известных геометрических теорем древности, называемая теоремой Пифагора. Ее и сейчас знают практически все, кто когда-либо изучал планиметрию. Мне кажется, что если мы хотим дать знать внеземным цивилизациям о существовании разумной жизни на Земле, то следует посылать в космос изображение Пифагоровой фигуры. Думаю, что если эту информацию смогут принять мыслящие существа, то они без сложной дешифровки сигнала поймут, что на Земле существует достаточно развитая цивилизация.
Знаменитый греческий философ и математик Пифагор Самосский, именем которого названа теорема, жил около 2,5 тысяч лет тому назад. Дошедшие до нас биографические сведения о Пифагоре отрывочны и далеко не достоверны. С его именем связано много легенд. Достоверно известно, что Пифагор много путешествовал по странам Востока, посещал Египет и Вавилон. В одной из греческих колоний Южной Италии им была основана знаменитая «Пифагорова школа», сыгравшая важную роль в научной и политической жизни древней Греции. Именно Пифагору приписывают доказательство известной геометрической теоремы. На основе преданий, распространенных известными математиками (Прокл, Плутарх и др.), длительное время считали, что до Пифагора эта теорема не была известна, отсюда и название – теорема Пифагора.
Не подлежит, однако, сомнению, что эту теорему знали за много лет до Пифагора. Так, за 1500 лет до Пифагора древние египтяне знали о том, что треугольник со сторонами 3, 4 и 5 является прямоугольным, и пользовались этим свойством (т. е. теоремой, обратной теореме Пифагора) для построения прямых углов при планировке земельных участков и сооружений зданий. Да и поныне сельские строители и плотники, закладывая фундамент избы, изготовляя ее детали, вычерчивают этот треугольник, чтобы получить прямой угол. Это же самое проделывалось тысячи лет назад при строительстве великолепных храмов в Египте, Вавилоне, Китае, вероятно, и в Мексике. В самом древнем дошедшем до нас китайском математико-астрономическом сочинении «Чжоу-би», написанном примерно за 600 лет до Пифагора, среди других предложений, относящихся к прямоугольному треугольнику, содержится и теорема Пифагора. Еще раньше эта теорема была известна индусам. Таким образом, Пифагор не открыл это свойство прямоугольного треугольника, он, вероятно, первым сумел его обобщить и доказать, перевести тем самым из области практики в область науки. Мы не знаем, как он это сделал. Некоторыми историками математики предполагается, что все же доказательство Пифагора было не принципиальным, а лишь подтверждением, проверкой этого свойства на ряде частных видов треугольников, начиная с равнобедренного прямоугольного треугольника, для которого оно очевидно следует из рис. 1.
С глубокой древности математики находят все новые и новые доказательства теоремы Пифагора, все новые и новые замыслы ее доказательств. Таких доказательств – более или менее строгих, более или менее наглядных – известно более полутора сотен, но стремление к преумножению их числа сохранилось. Думаю, что самостоятельное «открытие» доказательств теоремы Пифагора будет полезно и современным школьникам.
Рассмотрим некоторые примеры доказательств, которые могут подсказать направления таких поисков.
Доказательства, основанные на использовании понятия равновеликости фигур.
При этом можно рассмотреть доказательства, в которых квадрат, построенный на гипотенузе данного прямоугольного треугольника «складывается» из таких же фигур, что и квадраты, построенные на катетах. Можно рассматривать и такие доказательства, в которых применяется перестановка слагаемых фигур и учитывается ряд новых идей.
- На рис. 2 изображено два равных квадрата. Длина сторон каждого квадрата равна a + b. Каждый из квадратов разбит на части, состоящие из квадратов и прямоугольных треугольников. Ясно, что если от площади квадрата отнять учетверенную площадь прямоугольного треугольника с катетами a, b, то останутся равные площади, т. е. c 2 = a 2 + b 2 . Впрочем, древние индусы, которым принадлежит это рассуждение, обычно не записывали его, а сопровождали чертеж лишь одним словом: «смотри!» Вполне возможно, что такое же доказательство предложил и Пифагор.
Аддитивные доказательства.
Эти доказательства основаны на разложении квадратов, построенных на катетах, на фигуры, из которых можно сложить квадрат, построенный на гипотенузе.
- Доказательство Энштейна (рис. 3) основано на разложении квадрата, построенного на гипотенузе, на 8 треугольников.
Здесь: ABC – прямоугольный треугольник с прямым углом C; C О MN; CK ^ MN; PO||MN; EF||MN.
Самостоятельно докажите попарное равенство треугольников, полученных при разбиении квадратов, построенных на катетах и гипотенузе.
- На рис. 4 приведено доказательство теоремы Пифагора с помощью разбиения ан-Найризия – средневекового багдадского комментатора «Начал» Евклида. В этом разбиении квадрат, построенный на гипотенузе, разбит на 3 треугольника и 2 четырехугольника. Здесь: ABC – прямоугольный треугольник с прямым углом C; DE = BF.
Докажите теорему с помощью этого разбиения.
- На основе доказательства ан-Найризия выполнено и другое разложение квадратов на попарно равные фигуры (рис. 5, здесь ABC – прямоугольный треугольник с прямым углом C).
- Еще одно доказательство методом разложения квадратов на равные части, называемое «колесом с лопастями», приведено на рис. 6. Здесь: ABC– прямоугольный треугольник с прямым углом C; O – центр квадрата, построенного на большом катете; пунктирные прямые, проходящие через точку O, перпендикулярны или параллельны гипотенузе.
- Это разложение квадратов интересно тем, что его попарно равные четырехугольники могут быть отображены друг на друга параллельным переносом. Может быть предложено много и других доказательств теоремы Пифагора с помощью разложения квадратов на фигуры.
Доказательства методом достроения.
Сущность этого метода состоит в том, что к квадратам, построенным на катетах, и к квадрату, построенному на гипотенузе, присоединяют равные фигуры таким образом, чтобы получились равновеликие фигуры.
- На рис. 7 изображена обычная Пифагорова фигура – прямоугольный треугольник ABC с построенными на его сторонах
квадратами. К этой фигуре присоединены треугольники 1 и 2, равные исходному прямоугольному треугольнику.
Справедливость теоремы Пифагора вытекает из равновеликости шестиугольников AEDFPB и ACBNMQ. Здесь C О EP, прямая EP делит шестиугольник AEDFPB на два равновеликих четырехугольника, прямая CM делит шестиугольник ACBNMQ на два равновеликих четырехугольника; поворот плоскости на 90° вокруг центра A отображает четырехугольник AEPB на четырехугольник ACMQ.
- На рис. 8 Пифагорова фигура достроена до прямоугольника, стороны
которого параллельны соответствующим сторонам квадратов, построенных на катетах. Разобьем этот прямоугольник на треугольники и прямоугольники. Из полученного прямоугольника вначале отнимем все многоугольники 1, 2, 3, 4, 5, 6, 7, 8, 9, остался квадрат, построенный на гипотенузе. Затем из того же прямоугольника отнимем прямоугольники 5, 6, 7 и заштрихованные прямоугольники, получим квадраты, построенные на катетах.
Теперь докажем, что фигуры, вычитаемые в первом случае, равновелики фигурам, вычитаемым во втором случае.
- Рис. 9 иллюстрирует доказательство, приведенное Нассир-эд-Дином (1594 г.). Здесь: PCL – прямая;
KLOA = ACPF = ACED = a 2 ;
LGBO = CBMP = CBNQ = b 2 ;
AKGB = AKLO + LGBO = c 2 ;
отсюда c 2 = a 2 + b 2 .
- Рис. 10 иллюстрирует доказательство, приведенное Гофманом
(1821 г.). Здесь Пифагорова фигура построена так, что квадраты лежат по одну сторону от прямой AB. Здесь:
OCLP = ACLF = ACED = b 2 ;
CBML = CBNQ = a 2 ;
OBMP = ABMF = c 2 ;
OBMP = OCLP + CBML;
c 2 = a 2 + b 2 .
- Рис. 11 иллюстрирует еще одно более оригинальное доказательство, предложенное Гофманом.
Здесь: треугольник ABC с прямым углом C; отрезок BF перпендикулярен CB и равен ему, отрезок BE перпендикулярен AB и равен ему, отрезок AD перпендикулярен AC и равен ему; точки F, C, D принадлежат одной прямой; четырехугольники ADFB и ACBE равновелики, так как ABF=ECB; треугольники ADF и ACE равновелики; отнимем от обоих равновеликих четырехугольников общий для них треугольник ABC, получим
Алгебраический метод доказательства.
- Рис. 12 иллюстрирует доказательство великого индийского математика Бхаскари (знаменитого автора Лилавати,
XII в.). Рисунок сопровождало лишь одно слово: СМОТРИ! Среди доказательств теоремы Пифагора алгебраическим методом первое место (возможно, самое древнее) занимает доказательство, использующее подобие.
- Приведем в современном изложении одно из таких доказательств, принадлежащих Пифагору.
На рис. 13 ABC – прямоугольный, C – прямой угол, CM ^ AB, b1 – проекция катета b на гипотенузу, a1 – проекция катета a на гипотенузу, h – высота треугольника, проведенная к гипотенузе.
Из того, что D ABC подобен D ACM следует
из того, что D ABC подобен D BCM следует
Складывая почленно равенства (1) и (2), получим a 2 + b 2 = cb1 + ca1 = c(b1 + a1) = c 2 .
Если Пифагор действительно предложил такое доказательство, то он был знаком и с целым рядом важных геометрических теорем, которые современные историки математики обычно приписывают Евклиду.
- Доказательство Мёльманна (рис. 14).
Площадь данного прямоугольного треугольника, с одной стороны, равнас другой,
где p – полупериметр треугольника, r – радиус вписанной в него окружности
Имеем:
откуда следует, что c 2 =a 2 +b 2 .
- Доказательство Гарфилда.
На рисунке 15 три прямоугольных треугольника составляют трапецию. Поэтому площадь этой фигуры можно находить по формуле площади прямоугольной трапеции, либо как сумму площадей трех треугольников. В первом случае эта площадь равна
во втором
Приравнивая эти выражения, получаем теорему Пифагора.
- Существует много доказательств теоремы Пифагора, проведенных как каждым из описанных методов, так и с помощью сочетания различных методов. Завершая обзор примеров различных доказательств, приведем еще рисунки, иллюстрирующие восемь способов, на которые имеются ссылки в «Началах» Евклида (рис. 16 – 23). На этих рисунках Пифагорова фигура изображена сплошной линией, а дополнительные построения – пунктирной.
Рекомендуем учителям предложить учащимся по этим рисункам самостоятельно доказать теорему Пифагора.
- Как уже было сказано выше, древние египтяне более 2000 лет тому назад практически пользовались свойствами треугольника со
сторонами 3, 4, 5 для построения прямого угла, т. е. фактически применяли теорему, обратную теореме Пифагора. Приведем доказательство этой теоремы, основанное на признаке равенства треугольников (т. е. такое, которое можно очень рано ввести в школе). Итак, пусть стороны треугольника ABC (рис. 24) связаны соотношением
c 2 = a 2 + b 2 . (3)
- Докажем, что этот треугольник прямоугольный.
Построим прямоугольный треугольник A1B1C1 по двум катетам, длины которых равны длинам a и b катетов данного треугольника (рис. 25). Пусть длина гипотенузы построенного треугольника равна c1. Так как построенный треугольник прямоугольный, то по теореме Пифагора имеем: c1 2 = a 2 + b 2 . (4)
Сравнивая соотношения (3) и (4), получаем, что
Таким образом, треугольники – данный и построенный – равны, так как имеют по три соответственно равные стороны. Угол C1 прямой, поэтому и угол C данного треугольника тоже прямой.
- В заключение отметим, что о теореме Пифагора, ее истории и многих других связанных с ней геометрических фактах имеется обширная литература. Назову лишь некоторые источники:
1. Ван-дер-Варден Б.Л. Пробуждающаяся наука. Математика Древнего Египта, Вавилона и Греции. М., 1959.
2. Глейзер Г.И. История математики в школе. М., 1982.
3. Еленьский Щ. По следам Пифагора. М., 1961.
4. Литцман В. Теорема Пифагора. М., 1960.
5. Скопец З.А. Геометрические миниатюры. М., 1990.
Источник