Сколько способов расставить 2 ладьи чтобы они не били друг друга

Сколько способов поставить на шахматную доску двух ладей так, чтобы они не били друг друга?

Найти количество способов поставить на доску восемь ладей так, чтобы никакие две не били друг друга
Дана квадратная доска 12×12 клеток. Найдите количество способов поставить на неё восемь ладей так.

Сколькими способами можно разместить на шахматной доске восемь ладей так, чтобы они не били друг друга?
Помогите решить, задачу,если есть возможность объяснить первый шаг решения задачи,или общий ход.

Число способов расставить на шахматной доске NxN K ладей так, чтобы они не били друг друга
Требуется найти число способов расставить на шахматной доске NxN K ладей так, чтобы они не били.

Рекурсия: расставить на шахматной доске 8 ладей так, чтобы они не били друг друга
Нужно расставить на шахматной доске 8 ладей так, чтобы они не били друг друга, вот что я наваял: .

Решение

Iliodor, Странная дробь
Имхо.
а) 64*49
б) 14*49 + 50*48

Добавлено через 5 минут
в) 6*(49+8) + 8*(49+6) +49*48 (тут хорошо бы меня проверили)

Найти число способов расставить на доске магараджей так, чтобы они не били друг друга
Магараджа—это шахматная фигура, сочетающая возможности ферзя и коня. Таким образом, магараджа может.

Найти число способов расставить на доске N*N ровно K магараджей так, чтобы они не били друг друга
Магараджа — это шахматная фигура, сочетающая возможности ферзя и коня. Таким образом, магараджа.

Расставить на доске 8*8 ферзя и двух белопольных коней так, чтобы они не били друг друга
Расставьте на шахматной доске 8х8 клеток ферзя и двух белопольных коней так, чтобы они не били друг.

Найдите количество способов поставить на шахматную доску 8 ладей
Дана квадратная доска 10×10 клеток. Найдите количество способов поставить на нее 8 ладей так, чтобы.

Разместить k королей так, чтобы они не били друг друга
На прямоугольном клеточном поле n x m разместить k королей так, чтобы они не били друг друга. Если.

Источник

Сколько способов поставить на шахматную доску двух ладей так, чтобы они не били друг друга?

Найти количество способов поставить на доску восемь ладей так, чтобы никакие две не били друг друга
Дана квадратная доска 12×12 клеток. Найдите количество способов поставить на неё восемь ладей так.

Сколькими способами можно разместить на шахматной доске восемь ладей так, чтобы они не били друг друга?
Помогите решить, задачу,если есть возможность объяснить первый шаг решения задачи,или общий ход.

Число способов расставить на шахматной доске NxN K ладей так, чтобы они не били друг друга
Требуется найти число способов расставить на шахматной доске NxN K ладей так, чтобы они не били.

Рекурсия: расставить на шахматной доске 8 ладей так, чтобы они не били друг друга
Нужно расставить на шахматной доске 8 ладей так, чтобы они не били друг друга, вот что я наваял: .

Читайте также:  Систематический способ толкования правовой нормы это толкование с помощью

Решение

Iliodor, Странная дробь
Имхо.
а) 64*49
б) 14*49 + 50*48

Добавлено через 5 минут
в) 6*(49+8) + 8*(49+6) +49*48 (тут хорошо бы меня проверили)

Найти число способов расставить на доске магараджей так, чтобы они не били друг друга
Магараджа—это шахматная фигура, сочетающая возможности ферзя и коня. Таким образом, магараджа может.

Найти число способов расставить на доске N*N ровно K магараджей так, чтобы они не били друг друга
Магараджа — это шахматная фигура, сочетающая возможности ферзя и коня. Таким образом, магараджа.

Расставить на доске 8*8 ферзя и двух белопольных коней так, чтобы они не били друг друга
Расставьте на шахматной доске 8х8 клеток ферзя и двух белопольных коней так, чтобы они не били друг.

Найдите количество способов поставить на шахматную доску 8 ладей
Дана квадратная доска 10×10 клеток. Найдите количество способов поставить на нее 8 ладей так, чтобы.

Разместить k королей так, чтобы они не били друг друга
На прямоугольном клеточном поле n x m разместить k королей так, чтобы они не били друг друга. Если.

Источник

В чем секрет решения комбинаторных задач на шахматной доске? (стр. 2 )

Из за большого объема этот материал размещен на нескольких страницах:
1 2 3

2.1 Свойства шахматных фигур

Решая комбинаторные задачи, связанные с шахматными фигурами, я исследовал свойства шахматных фигур.

Ладья ходит по вертикали и горизонтали. Следовательно, под ударом одновременно, не зависимо на каком поле стоит ладья, находятся 14 полей.

Ферзь ходит по вертикали, горизонтали и диагонали. Количество полей, находящихся одновременно под боем ферзя, зависит от места его расположения на шахматной доске. Если ферзь стоит на угловом поле или на крайних полях, то под боем находится 21 поле, на второй линии от края – 23 поля, на третьей линии от края – 25 полей, на четвертой линии от края – 27 полей.

Король ходит на любое соседнее поле. Если король стоит на угловом поле, то под боем одновременно находятся 3 поля, если на полях крайней линии, то – 5 полей, на всех остальных – 8 полей.

Конь ходит зигзагом, на одно плюс два поля или два плюс одно поле. Количество полей, находящихся одновременно под боем коня, зависит от места его расположения на шахматной доске. Если конь стоит на угловом поле, то под боем находятся 2 поля. На крайних вторых полях – 3 поля, на остальных крайних полях и на угловых полях второй линии от края – 4 поля. На остальных полях второй линии от края – 6 полей, на третьей и четвертой линиях от края – по 8 полей одновременно находятся под боем.

Слон ходит по диагоналям. Количество полей, находящихся одновременно под боем слона, зависит от места его расположения на шахматной доске. Если слон стоит на угловом поле или на крайних полях, то под боем находятся 7 полей, на второй линии от края – 9 полей, на третьей линии от края – 11 полей, на четвертой линии от края – 13 полей.

Читайте также:  Морковь петрушка редис укроп салат можно выращивать рассадным способом тест

Исходя из полученных данных, задачи можно разделить по количеству фигур и по поставленной задаче. Также можно еще рассмотреть условие: одного цвета фигуры или разного.

2.2 Правила суммы и произведения

Большинство комбинаторных задач решаются с помощью двух основных правил: суммы и произведения.

Если некоторый объект А можно выбрать m способами, и если после каждого такого выбора объект В можно выбрать n способами, то выбор пары (А, В) можно осуществить m n способами. Это утверждение — правило произведения. [5 с 5]

Если некоторый объект А можно выбрать m способами, а другой объект В можно выбрать n способами, то выбор «либо А, либо В» можно осуществить m + n способами. В этом случае общее число комбинаций равно сумме чисел комбинаций во всех классах. Это утверждение называют правилом суммы. [5 с 6]

Пример 1 Сколькими способами можно поставить на шахматную доску белого и черного королей так, чтобы получилась по правилам игры комбинация?

Решение: Зная правила игры в шахматы, не сложно рассмотреть все расстановки. Во-первых, рассматриваются короли, а мы знаем свойства этой фигуры. Во-вторых, фигуры разного цвета (белый и черный король). И, в-третьих, фигуры не бьют друг друга. Из свойств шахматных фигур мы знаем, сколько и на каком поле находится под боем полей. Если первый король стоит на угловом поле, то под боем 3 поля, то на всех остальных полях второй король в «безопасности». И таких полей – 60. А угловых полей всего четыре (2 черных и 2 белых), Если один король стоит на любом из крайних полей, то под боем у него 5 полей, значит другой король на всех остальных 58 полях в «безопасности». А крайних полей всего 24 (12 белых и 12 черных). Ну а если один король стоит на любом другом поле, то под боем у него 8 полей. И значит другой король на всех остальных 55 полях в «безопасности». Таких полей 36. Таким образом, получаем число расстановок: 4(64 — 4) + 24(64 — 6) + 36(64 — 9) = 3612

Ответ: 3612

Если сменить условие.

Пример 2 Сколькими способами можно поставить на шахматную доску белого и черного королей так, чтобы фигуры били друг друга?

Решение: Тогда на угловых полях по три поля под боем, на крайних – по пять полей под боем, на остальных — по 8 полей под боем. Считаем число таких расстановок 4 • 3 + 24 • 5 + 36 • 8 = 420 Ответ: 420

Пример 3 Сколькими способами можно поставить на шахматную доску двух королей одного цвета так, чтобы фигуры не били друг друга?

Решение: Так как на шахматной доске всего 64 поля. 32 из них белые и 32 черные. Если первый король стоит на угловом поле, то под боем 3 поля, то на всех остальных полях второй король в «безопасности». И таких полей – 60. А угловых полей одного цвета 2 (2 черных или 2 белых), Если один король стоит на любом из крайних полей, то под боем у него 5 полей, значит другой король на всех остальных 58 полях в «безопасности». А крайних полей одного цвета 12 (12 белых или 12 черных). Ну а если один король стоит на любом другом поле, то под боем у него 8 полей. И значит другой король на всех остальных 55 полях в «безопасности». Таких полей 18 (одного цвета). Считаем число таких расстановок

Читайте также:  Раковина над стиральной машиной способы крепления

2 • 60 + 12 • 58 + 18 • 8 = 1806 Ответ: 1806

Получается, что число способов расставить королей одного цвета, чтобы они не били друг друга, в два раза меньше, чем число способов расставить королей разного цвета. Так как число рассматриваемых полей уменьшилось в двое. Получаем 3612 : 2 = 1806

Пример 4 Сколькими способами можно поставить на шахматную доску двух королей одного цвета так, чтобы фигуры били друг друга?

Решение: Число способов расстановки фигур также будет в два раза меньше, чем для королей разного цвета. 420 : 2 = 210 Ответ: 210

А если рассматривать задачу, в которой не говорится о цвете фигур, то при подсчете числа способов необходимо рассмотреть оба случая, и когда фигуры разного цвета, и когда фигуры одного цвета.

Пример 5 Сколькими способами можно расставить двух короле, чтобы они не били друг друга?

Решение: Так как число расстановок двух королей разного цвета, которые не бьют друг друга, равно 3612, я число расстановок двух королей одного цвета, которые не бьют друг друга, равно 1806. То общее число расстановок 3612 + 1806 = 5418 Ответ: 5418

Пример 6 Сколькими способами можно расставить двух короле, чтобы они били друг друга?

Решение: Считаем число таких расстановок 420 + 210 = 630 Ответ: 630

Пример 7 Сколькими способами можно расставить 12 белых и 12 черных шашек на черных полях шахматной доски?

Решение: , где k = 12, n = 32, m = 20

= = Ответ:

Наряду с правилами суммы и произведения, для решения комбинаторных задач на шахматной доске применяются правила перестановки, сочетания, размещения.

Пример 8 Сколькими способами можно расставить белые фигуры (короля, ферзя, две ладьи, двух слонов и двух коней) на первой линии шахматной доски (не соблюдая шахматные правила)?

Решение: = ; где n=1+1+2+2+2=8,

k1 = 1, k2 = 1, k3 =2, k4 = 2, k5 = 2

= = = 5040 Ответ: 5040

Пример 9 Сколькими способами можно поставить на шахматную доску 8 ладей?

Решение: = ; где n = 64, k = 8

= = = 4 426 165 368 Ответ: 4 426 165 368

Пример 10 Сколькими способами можно разместить восемь ладей на шахматной доске так, чтобы они не били друг друга?

P8 = 8! = 12345678 = 40320 Ответ: 40320

У меня получилась следующая классификация найденных комбинаторных задач на шахматную тему: задачи можно разделить по количеству фигур и по поставленной задаче (бьют друг друга фигуры или нет). Так же можно еще рассмотреть условие: одного цвета фигуры или разного. (Приложение 10)

Источник

Оцените статью
Разные способы