Сколько способов описания механического движения вам известно перечислите

Способы описания механического движения.

Способы описания механического движения.

по средством указания вектора Aв каждый момент времени –

векторный способ,естественный –по параметрам движения например пройденному частицей.

Координатный – посредством указаний проекций в декартовой системе координат.

Векторный способ описания движения заключается в нахождении величины и направления радиус-вектора rв любой

момент времени, т. е. установлении вида зависимости:

r(t) = r(t)·er(t),

где r(t) — модуль (величина) радиус-вектора;

er(t) — единичный век тор, задающий направление вектора r.

er = r/r = ,

Эквивалентность различных способов описания движения.

Путь и траектория. Понятие средней и мгновенной скорости и ускорения. Скорость прохождения пути. Поиск графика движения по его характеристикам.

Вектором средней скорости называется величина, равная отношению приращения радиус-вектора к промежутку времени, в течение которого оно произошло.

Vср = ∆r/∆t. Вектор средней скорости сонаправлен вектору перемещения,

но их величины не равны друг другу и, кроме того, измеряются в разных единицах. Для описания движения в конкретный момент времени

используется понятие мгновенной скорости, V=lim ∆r/∆t=dr/dt. Мгновенная скорость показывает, как быстро изменяется радиус-вектор материальной точки при бесконечно малом приращении времени Dt для выбранного момента t. Траектория – воображаемая непрерывная линия по которой перемещается мат. точка в пространстве. Вектором среднего ускорения называется физическая

величина, равная отношению приращения вектора скорости к промежутку времени, в течение которого оно произошло.

aср = ∆V /∆t. Мгновенное ускорение равно пределу, к которому стремится

среднее ускорение при ∆t, стремящемуся к нулю, или производной от вектора скорости по времени:

a=lim ∆v/∆t=dv/dt.

Скорость прохождения пути.

∆S=∫│V(t)│dt; Vs ср = ∆s/∆t;

|Vср.|(t)= 1/(t-tₒ)∫│V(t)│dt; Vsср=|V|ср.

4. Преобразования Галилея. Инвариантность пространственных и временных интервалов в классической физике. Законы преобразований скоростей и ускорений.

Преобразования Галилея.Выявим связь между пространственными координатами в неподвижной относительно наблюдателя — лабораторной СО (ЛСО) S и СО S’, движущейся

относительно нее равномерно прямолинейно. Пусть СО S’

смещается в положительном направлении вдоль оси OX с постоянной скоростьюV, для

любого момента времени можно записать выражение, связывающее радиус-вектор r‘ частицы A в подвижной и ЛСО:

rA’ = rA — r‘0 = rA – V*t.

Здесь мы учли абсолютный характер времени и предварительно проведенную операцию синхронизации часов в начальный

момент времени, когда начала обеих систем координат совпадали (т. е. tₒ = tₒ’ = 0). Спроецировав это уравнение на оси координат и учтя абсолютность времени и предварительно проведенную в этих системах от счета процедуру синхронизации часов, получим прямые и обратные преобразования Галилея:

x’ = x – V*t; y’ = y; z’ = z; t’ = t;

x = x’ + V*t’; y’ = y; z’ = z; t’ = t.

Согласно преобразованиям Галилея: одновременность — инвариант преобразований. События, одновременные в одной СО, одновременны в любой другой системе отсчета, движущейся относительно

нее равномерно прямолинейно;

временной и пространственный интервалы — инварианты преобразований Галилея.

Инвариантные величины в классической механике.

Докажем утверждение об инвариантности пространственного

интервала применительно к классической механике (т. е. его

инвариантность к преобразованиям Галилея).Пусть СО S’ движется относительно системы S с переменной скоростью V(t), много меньшей скорости света. Используя принцип независимости перемещений, можно записать, что радиус-векторы произвольных точек A и B в этих СО в приближении классической механики связаны между собой следующими соотношениями: rA=r’A+∫V(t)dt; rB=r’B+∫V(t)dt;

Из этих соотношений следует, что пространственный ин тер вал ∆r = |∆r| не зависит от вы бора СО:|∆r‘|=|r‘B- r‘A|=|rB- rA| = |∆r|. Пространственный интервал в классической механике есть абсолютная величина по отношению к выбору СО.Из однородности времени, однородности и изотропности пространства, а так же преобразований Галилея вытекают обобщения повседневного опыта и удается выявить характеристики пространственно-временных отношений, не зависящие от выбора СО, в том числе движущихся. Ими являются временные и пространственные интервалы. Временной и пространственный интервалы инвариантны по

Читайте также:  Способы хранения идентифицирующей информации

отношению к преобразованиям Галилея.

Закон преобразования скоростей. Скорость частицы при переходе от описания движения в одной СО к описанию движения в другой изменяется в соответствии со следующим

уравнением, называемым законом преобразования скоростей:

v=v’ + V, где v — абсолютная скорость (скорость частицы относительно ЛСО); v’ относительная скорость (скорость частицы относительно движущейся СО системы S’);

Vпереносная скорость (скорость движения системы S’ относительно ЛСО).

Движение материальной точки по окружности и её кинематические характеристики: вектор элементарного углового перемещения, угловая скорость и ускорение. Связь линейных и угловых кинематических характеристик.

Движение частицы по окружности как движение с одной степенью свободы.При движении частицы поокружности меняется только направление ее радиус-вектора r(t). Уравнение, характеризующее изменение положения материальной точки со временем, имеет вид:r(t) = r·e(t), где r = const; er — единичный вектор, направленный вдоль r. Пусть радиус-вектор частицы описывает конус. Тогда его сечение плоскостью XO’Y, перпендикулярной оси OZ — оси

симметрии этого конуса, образует окружность радиуса r

В декартовой СК зависимости координат частицы от

времени имеют следующий вид: x(t)=p·cosφ(t); y(t)=p·sinφ(t),

а траектория частицы задается уравнением: x*x+y*y=p*p

Понятие вектора элементарного углов го перемещения.Рассмотрим движение частицы в плоскости XY в полярных координатах. В данном случае поскольку частица обладает одной степенью свободы, ее движение удобно характеризовать зависимостью угловой координаты (угла) от времени φ(t)и может быть описано следующим образом:

r=const. φ=φ(t) . По аналогии с понятием вектора элементарного перемещения drвведем понятие вектора элементарного углового перемещения dφ . За величину вектора dφ примем значение угла, на который повернется частица вокруг оси OZ за время dt, выраженное в радианах. Направление вектора dφ зададим таким образом, чтобы оно совпадало с осью вращения и определялось в соответствии с правилом буравчика или правого винта. следует, что вектора линейного и углов го перемещений связаны соотношением dr=[dφ*r] и не

зависят от выбора положения тела от счета (точки O) на оси

вращения. Модуль вектора drравен dr=dφ·r·sinθ=dφ·p и не зависит от выбора точки О на оси OZ Направление вектора drзадается следующим образом. Вектора dφ и rизображают исходящими из одной точки. Затем головку правого винта поворачивают от dφ к r. Направление вектора dr) будет совпадать с направлением поступательного движения правого винта. Чтобы быть вектором, величина должна удовлетворять закону сложения векторов. Последовательность перемещений на элементарные углы подчиняется этому закону и величина dφ с этой точки зрения может быть вектором. Перемещения же на конечные углы ∆φ этому правилу не удовлетворяют. Кроме этого, при повороте на конечный угол ∆φ модуль вектора перемещения равен: |∆r|=2r*sinθ*sin∆φ/2 и, следовательно, соотношение dr=[dφ*r] в этом случае не выполняется. Для малых углов поворота оно соблюдается приближенно и тем точнее, чем величина 2· sin(∆φ/2) ближе к ∆φ.

Вектор угловой скорости – физическая величина, равная производной от вектора углового перемещения по времени:

Вектор углового ускорения – физическая величина, равная производной от угловой скорости по времени:

Читайте также:  Способ отражения внутреннего мира человека

Связь: a=sqrt(a(тао в квадрате)+a(n-ое в квардате))

A(тао)= [ε,r]. a(n-ое) =[ω[ω.r]]

Описание движения несвободных частиц в ИСО. Понятие силы и массы. Второй закон Ньютона. Процедура измерения массы, свойства массы. Понятие импульса материальной точки. Второй закон Ньютона в Импульсивной форме.

Частица, которая не изменяет в результате взаимодействия с другими телами свои свойства (например массу), но изменяет характеристики своего состояния (радиус-вектор и скорость) называется несвободной. изменение характеристик состояния несвободнойчастицы происходит под влиянием внешнего воздействия.Сила— физическая величина, являющаяся мерой воздействия одного тела или поля на другое тело. Масса – физическая величина – отражающая способность частицы сопротивляться внешнему воздействию. Масса является мерой инертности тела по отношению к внешнему воздействию. В этой связи ее называют инертной массой. Свойства массы: аддитивность — M=m1+m2. масса величина скалярная, значение которой постоянно в медленно движущихся ИСО, Второй закон Ньютона – Ускорение зависит от силы прямо пропорционально а от массы обратно пропорционально. Второй закон Ньютона можно применять в любых ИСО, движущихся со скоростями, много меньшими скорости света. Импульс – произведение массы частицы на вектор её скорости. P=mv.Закон движения в импульсивной форме:

F=ma=m*dv/dt=dvm/dt=dP/dt

10.Действие и противодействие. Третий закон Ньютона. Область применимости третьего закона Ньютона. В природе нет односторонних действий, есть исключительно взаимодействия. Третий закон рассматривает взаимодействие тел. Этот закон утверждает, что независимо от природы взаимодействия любая пара тел действует друг на друга с силами, равными по величине и направленными в противоположные стороны вдоль прямой, соединяющей эти тела.

11. Понятие неинерциальной СО. Силы инерции и их свойства. Причины возникновения сил инерции.

Сила инерции сила, сообщающая телу дополнительное ускорение, которое не вызвано взаимодействием с

другими телами или полями и обусловлено ускоренным характером движения системы отсчета. Свойства: пропорциональна ускорению, пропорциональна массе тела, направлена против вектора ускорения с которым движется НСО. (В НСО ВТОРОЙ ЗАКОН НЬЮТОНА НЕ ВЫПОЛНЯЕТСЯ)

Способы описания механического движения.

по средством указания вектора Aв каждый момент времени –

векторный способ,естественный –по параметрам движения например пройденному частицей.

Координатный – посредством указаний проекций в декартовой системе координат.

Векторный способ описания движения заключается в нахождении величины и направления радиус-вектора rв любой

момент времени, т. е. установлении вида зависимости:

r(t) = r(t)·er(t),

где r(t) — модуль (величина) радиус-вектора;

er(t) — единичный век тор, задающий направление вектора r.

er = r/r = ,

Эквивалентность различных способов описания движения.

Источник

Способы описания движения – система отчета механического

Кинематика – это раздел механики, изучающий движения тел вне зависимости от их причин. Для описания движения применяется ряд способов, обзор которых предлагается в данной статье.

Движение и его описание

Суть любого механического движения состоит в том, что тела меняют свое положение с течением времени. Главная задача кинематики состоит в том, чтобы находить это положение в любой указанный момент времени, как прошлого, так и будущего.

Для решения этой задачи движение необходимо описать так, чтобы описание выявляло закономерности, по которым происходит изменение положения тел. А дальше, задаваясь нужным моментом времени и сформулированным описанием – можно найти положение тела без непосредственного ожидания и измерения.

Таким образом, описание движения позволяет понять события, произошедшие в прошлом и будущем (иногда в далеком).

Способы описания движения

Любое описание движения заключается в том, чтобы найти связь между координатами тела в выбранной Системе Отсчета с моментами времени в этой же Системе. Если эта связь задана, то выбрав необходимый момент, можно получить координаты тела в это время.

Читайте также:  Способ рубок главного пользования

Как можно задать связь между временем и координатой ? Имеется три способа описания механического движения.

Рис. 1. Способы описания движения – табличный, графический, аналитический.

Табличный способ

Исторически первым способом описания движения стал табличный. Он заключается в том, чтобы отмечать координаты тела в некоторые моменты времени. По представленному ряду пар «время – координата» мы можем видеть, в какие моменты прошлого тело двигалось быстрее, в какие медленнее, и когда где оно было.

Безусловно, такой способ самый грубый, поскольку моменты времени в таблице не обязательно будут равномерными, и, кроме того, таблица не дает представления о том, в каких точках находилось тело в моменты времени, не указанные в таблице. Однако, зачастую это и не требуется. Поэтому табличный способ описания движения до сих пор находит применение. В современных условиях для этого чаще всего используют стробоскопическую фотографию. Освещая тело в ряд моментов, можно зафиксировать положение тела в эти моменты.

Рис. 2. Стробоскопическое фото движения.

Например, бросив тело с начальной высоты 2м вверх со скоростью 5м/с, и настроив стобоскоп на промежуток 0.2с, можно получить следующую таблицу, описывающую движение:

Время, с

Координата, м

Любое описания путешествий является таким табличным способом, поскольку везде, как правило, указывается ряд пар «место, где был путешественник – время, когда он туда прибыл».

Графический способ

Самым наглядным описанием движения является графический способ. Откладывая на оси абсцисс время, а на оси ординат расстояние – можно получить график, по которому положение тела в пространстве определяется в любой нужный момент. Кроме того, такой график дает наглядное представление о скорости изменения координаты.

Рис. 3. Пример графика зависимости расстояния от времени.

График зависимости координаты от времени ничего не говорит о траектории пути! График может быть прямой, а траектория – извилистой, и наоборот. Например, для случая, рассмотренного выше (тело, брошенное вверх), график координаты будет параболой. А траектория пути – прямой.

Аналитический способ

Наиболее полным и точным способом описания движения является аналитический, то есть, заданный математически.

Поскольку любая функция выражает зависимость, а описание движение и есть описание зависимости расстояния от времени – то во многих случаях данную зависимость можно выразить функцией. Задавшись такой функцией, и подставляя в качестве исходной переменной нужный момент времени – мы можем получить координату в этот момент.

Для примера, рассмотренного выше (тело, брошенное вверх), математическая функция, описывающая движение тела, выглядит следующим образом:

$$x(t) = 2 + 5t – 4.9t^2$$

Подставляя необходимый момент $t$, можно получить все значения из таблицы выше, а если надо – то и построить график зависимости расстояния от времени.

К сожалению, для большинства движений точное аналитическое описание слишком сложно (например, учет сопротивления воздуха сильно усложняет приведенную формулу). Однако, аналитический способ позволяет выделить наиболее важную компоненту движения, и описать ее наиболее удобным для дальнейшего использования образом.

Что мы узнали?

Описание движения устанавливает закономерности, с которыми тело меняло свое положение в пространстве. Они позволяют узнать положение тела в любой момент в прошлом, и спрогнозировать положение в будущем. Для описания движения применяется три способа: табличный, графический и аналитический.

Источник

Оцените статью
Разные способы