- Задачи по теме «Комбинаторика»
- Дистанционное обучение как современный формат преподавания
- Методика обучения математике в основной и средней школе в условиях реализации ФГОС ОО
- Математика: теория и методика преподавания в образовательной организации
- Оставьте свой комментарий
- Безлимитный доступ к занятиям с онлайн-репетиторами
- Подарочные сертификаты
- Задачи комбинаторики.
- Задачи и решения.
- Комментарии.
Задачи по теме «Комбинаторика»
Задачи для решения на закрепление нового материала
Задача № 1 . Сколькими способами могут быть расставлены 5 участниц финального
забега на 5-ти беговых дорожках?
Решение : Р 5 = 5!= 1 ∙2 ∙3 ∙4 ∙5 = 120 способов.
Задача №2. Сколько трехзначных чисел можно составить из цифр 1,2,3, если каждая
цифра входит в изображение числа только один раз?
Решение : Число всех перестановок из трех элементов равно Р 3 =3!, где 3!=1 * 2 * 3=6
Значит, существует шесть трехзначных чисел, составленных из цифр 1,2,3.
Задача № 3. Сколькими способами четверо юношей могут пригласить четырех из шести
девушек на танец?
Решение : два юноши не могут одновременно пригласить одну и ту же девушку. И
варианты, при которых одни и те же девушки танцуют с разными юношами,
считаются разными, поэтому:
Задача № 4 . Сколько различных трехзначных чисел можно составить из цифр 1, 2, 3, 4, 5,
6, 7, 8, 9 при условии, что в записи числа каждая цифра используется только
Решение : В условии задачи предложено подсчитать число всевозможных комбинаций из
трех цифр, взятых из предположенных девяти цифр, причём порядок
расположения цифр в комбинации имеет значение (например, числа 132)
и 231 различные). Иначе говоря, нужно найти число размещений из девяти
элементов по три.
По формуле числа размещений находим:
Ответ : 504 трехзначных чисел.
Задача №5 Сколькими способами из 7 человек можно выбрать комиссию, состоящую из 3
Решение: Чтобы рассмотреть все возможные комиссии, нужно рассмотреть все
возможные 3 – элементные подмножества множества, состоящего из 7
человек. Искомое число способов равно
Задача № 6. В соревновании участвуют 12 команд. Сколько существует вариантов
распределения призовых (1, 2, 3) мест?
Решение : А 12 3 = 12 ∙11 ∙10 = 1320 вариантов распределения призовых мест. Ответ : 1320 вариантов.
Задача № 7. На соревнованиях по лёгкой атлетике нашу школу представляла команда из
10 спортсменов. Сколькими способами тренер может определить, кто из них
побежит в эстафете 4 100 м на первом, втором, третьем и четвёртом этапах?
Решение: Выбор из 10 по 4 с учётом порядка:
способов.
Ответ: 5040 способов.
Задача № 8. Сколькими способами можно выложить в ряд красный, черный, синий и
Решение: На первое место можно поставить любой из четырех шариков (4 способа), на
второе – любой из трех оставшихся (3 способа), на третье место – любой из
оставшихся двух (2 способа), на четвертое место – оставшийся последний шар.
Всего 4 · 3 · 2 · 1 = 24 способа.
Р 4 = 4! = 1 · 2 · 3 · 4 = 24. Ответ: 24 способа.
Задача № 9 . Учащимся дали список из 10 книг, которые рекомендуется прочитать во
время каникул. Сколькими способами ученик может выбрать из них 6 книг?
Решение: Выбор 6 из 10 без учёта порядка: способов.
Ответ: 210 способов.
Задача № 10 . В 9 классе учатся 7 учащихся, в 10 — 9 учащихся, а в 11 — 8 учащихся. Для
работы на пришкольном участке надо выделить двух учащихся из 9 класса,
трех – из 10, и одного – из 11 . Сколько существует способов выбора
учащихся для работы на пришкольном участке?
Решение: Выбор из трёх совокупностей без учёта порядка, каждый вариант выбора из
первой совокупности (С 7 2 ) может сочетаться с каждым вариантом выбора из
второй (С 9 3 ) ) и с каждым вариантом выбора третьей (С 8 1 ) по правилу
Ответ: 14 112 способов.
Задача № 11. Девятиклассники Женя, Сережа, Коля, Наташа и Оля побежали на
перемене к теннисному столу, за которым уже шла игра. Сколькими
способами подбежавшие к столу пятеро девятиклассников могут занять
очередь для игры в настольный теннис?
Решение : Первым в очередь мог встать любой девятиклассник, вторым – любой из
оставшихся троих, третьим – любой из оставшихся двоих и четвёртым –
девятиклассник, подбежавший предпоследним, а пятым – последний. По
правилу умножения у пяти учащихся существует 5· 4 3 2 1=120 способов
Курс повышения квалификации
Дистанционное обучение как современный формат преподавания
- Сейчас обучается 821 человек из 76 регионов
Курс повышения квалификации
Методика обучения математике в основной и средней школе в условиях реализации ФГОС ОО
- Сейчас обучается 290 человек из 69 регионов
Курс профессиональной переподготовки
Математика: теория и методика преподавания в образовательной организации
- Сейчас обучается 605 человек из 75 регионов
Ищем педагогов в команду «Инфоурок»
Номер материала: ДБ-212675
Международная дистанционная олимпиада Осень 2021
Не нашли то что искали?
Вам будут интересны эти курсы:
Оставьте свой комментарий
Авторизуйтесь, чтобы задавать вопросы.
Безлимитный доступ к занятиям с онлайн-репетиторами
Выгоднее, чем оплачивать каждое занятие отдельно
Вопрос о QR-кодах для сотрудников школ пока не обсуждается
Время чтения: 2 минуты
Минпросвещения разрабатывает образовательный минимум для подготовки педагогов
Время чтения: 2 минуты
В Пензенской области запустят проект по снижению административной нагрузки на учителей
Время чтения: 1 минута
В Осетии студенты проведут уроки вместо учителей старше 60 лет
Время чтения: 1 минута
Рособрнадзор откажется от ОС Windows при проведении ЕГЭ до конца 2024 года
Время чтения: 1 минута
Минпросвещения будет стремиться к унификации школьных учебников в России
Время чтения: 1 минута
Подарочные сертификаты
Ответственность за разрешение любых спорных моментов, касающихся самих материалов и их содержания, берут на себя пользователи, разместившие материал на сайте. Однако администрация сайта готова оказать всяческую поддержку в решении любых вопросов, связанных с работой и содержанием сайта. Если Вы заметили, что на данном сайте незаконно используются материалы, сообщите об этом администрации сайта через форму обратной связи.
Все материалы, размещенные на сайте, созданы авторами сайта либо размещены пользователями сайта и представлены на сайте исключительно для ознакомления. Авторские права на материалы принадлежат их законным авторам. Частичное или полное копирование материалов сайта без письменного разрешения администрации сайта запрещено! Мнение администрации может не совпадать с точкой зрения авторов.
Источник
Задачи комбинаторики.
Чтобы научиться быстро бегать, нужно много бегать. Чтобы научиться хорошо решать сложные задачи, нужно решать много простых задач. И то, и другое надо делать с умом. Последовательно тренировать определенные группы мышц, и постепенно вникать в смысл математических выражений.
Давайте рассмотрим несколько очень простых задач, сравнивая их между собой. Сравнение поможет нам понять и запомнить, как выбрать нужную формулу для подсчёта числа вариантов в той или иной ситуации. А чтобы никто не усомнился в том, что задачи действительно простые, я взяла за основу Сборник тестовых заданий к учебнику Н.Я. Виленкина и др. «Математика. 5 класс». Конечно, для пятиклассников это задания высокого уровня сложности «С», но они справляются. Дело в том, что эти задачи можно решить как простым перебором вариантов, тем быстрее, чем выше уровень обобщения, так и по формулам комбинаторики. Старшеклассникам рекомендую повторить формулы и правила комбинаторики, если вы попали на эту страницу из поисковика, миновав теорию.
Итак,
— внимательно читаем условия 2-ух задач из одной строки таблицы;
— решаем обе задачи любыми доступными способами (желательно не одним);
— открываем ответы нажатием на зеленые кнопки и сравниваем их со своими ответами;
— открываем решения и комментарии к ним нажатием на желтые кнопки.
Помните, что ваше решение не обязательно должно совпадать с моим, достаточно, чтобы оно было логичным и позволяло получить верный ответ.
Задачи и решения.
Задача 1a | Задача 1b |
---|---|
При окончании деловой встречи специалисты обменялись визитными карточками. Сколько всего визитных карточек перешло из рук в руки, если во встрече участвовали 6 специалистов? | При встрече каждый из друзей пожал другому руку. Сколько всего было рукопожатий, если встретились 6 друзей? |
Задача 2a | Задача 2b |
В хоровом кружке занимаются 9 человек. Необходимо выбрать двух солистов. Сколькими способами это можно сделать? | В спортивной команде 9 человек. Необходимо выбрать капитана и его заместителя. Сколькими способами это можно сделать? |
Два солиста равноправны. (Может быть, и петь планируют дуэтом.) Нас не волнует порядок следования в группе из 2-ух человек, выбранных из 9-ти. Значит определяем число сочетаний из 9 по 2. Казалось бы, мы снова выбираем 2-ух человек из 9-ти, но теперь между ними качественная разница. Они будут выполнять разные обязанности в команде. Мы выбираем капитана И заместителя независимо друг от друга. Поэтому применим правило умножения вариантов (И-правило). Из 9-ти человек капитана можно выбрать 9-тью способами. Его заместителя из оставшихся 8-ми человек — 8-мью способами. Общее число вариантов: 9·8 = 72. (Заметьте, что если сначала выбрать заместителя из 9 человек, а потом капитана из оставшихся 8-ми, результат будет тот же.) Можно рассуждать иначе. Есть два места для капитана и его заместителя, нужно разместить на них 2-ух человек, выбрав их из 9-ти. Такие группировки (выборки) называются размещениями. Число размещений определяем по формуле | |
Задача 3a | Задача 3b |
Сколько существует вариантов рассаживания вокруг стола 6 гостей на 6 стульях? | В понедельник в пятом классе 5 уроков: музыка, математика, русский язык, литература и история. Сколько различных способов составления расписания на понедельник существует? |
Легко понять, что в этой задаче речь идет о перестановках. 6 гостей занимают все 6 стульев и могут только меняться местами. Число перестановок из 6 определяем по формуле Может быть, не так очевидно, но это тоже перестановки. С точки зрения математики, вообще та же самая задача. Представьте себе, что расписание составляете вы. Чертите таблицу с пятью строками для пяти уроков («готовите стулья») и вписываете в каждую строку название одного из 5-ти предметов («рассаживаете гостей»). Число перестановок из 5 определяем по формуле | |
Задача 4a | Задача 4b |
Пятеро друзей сыграли между собой по одной партии в шахматы. Сколько всего партий было сыграно? | Сколькими способами 10 футбольных команд могут разыграть между собой золотые, бронзовые и серебряные медали? |
В шахматной партии 2 равноправных участника (точно также, как в задаче о рукопожатиях). Значит из 5-ти человек формируем группы по 2 без учета порядка следования — сочетания. Определяем число сочетаний из 5 по 2. На пьедестале почёта находятся 3 команды из 10, и для них очень существенно, кто какое место занял, т.е. порядок следования. Составление групп с учетом порядка следования — размещения. Число размещений определяем по формуле | |
Задача 5a | Задача 5b |
В меню столовой предложено на выбор 2 первых блюда, 6 вторых и 4 третьих блюда. Сколько различных вариантов обеда, состоящего из первого, второго и третьего блюда, можно составить? | Имеется 6 видов овощей. Решено готовить салаты из трёх видов овощей. Сколько различных вариантов салатов можно приготовить? |
Задача 6a | Задача 6b |
В магазине продаются блокноты 7 разных видов и ручки 4 разных видов. Сколькими разными способами можно выбрать покупку из одного блокнота и одной ручки? | В магазине продаются блокноты 7 разных видов и ручки 4 разных видов. Сколькими способами можно выбрать покупку из двух разных блокнотов и одной ручки? |
Выбираем одну ручку И один блокнот. Одну ручку из 4-ёх 4-мя способами, один блокнот из 7-ми — 7-ю способами. Применяем правило умножения Выбираем одну ручку И два блокнота. Снова можем применить правило умножения вариантов. Одну ручку из 4-ёх можем выбрать 4-мя способами, два блокнота из 7-ми — ? способами. | |
Задача 7a | Задача 7b |
На прививку в медпункт отправились 7 друзей. Сколькими разными способами они могут встать в очередь у медицинского кабинета? | Секретный замок состоит из 4 барабанов, на каждом из которых можно выбрать цифры от 0 до 9. Сколько различных вариантов выбора шифра существует? |
Число способов встать в очередь равно числу перестановок 7-ми друзей в пределах этой очереди. Задача такая же, как о гостях и стульях, но обратите внимание, насколько быстро растет число вариантов при увеличении числа переставляемых предметов. На каждом барабане можно выбрать 1-ну цифру из 10-ти 10-тью способами и независимо от других, поэтому применяем правило умножения: Можно также считать, что нужно разместить 10 цифр на 4-ёх местах с повторениями. В комбинаторике существует раздел «Выборки с повторениями» (см. подробнее). В данном случае нам нужна формула для размещений. Число размещений с повторениями определяется как n k , где n — количество элементов для выбора (здесь n = 10 цифр), k — объём выборки или количество возможных повторов одного элемента (здесь k = 4, одна и та же цифра может быть установлена на всех четырех барабанах). Таким образом, искомое число вариантов | |
Задача 8a | Задача 8b |
Сколько различных трёхзначных чисел можно составить при помощи цифр 4, 7, 9? (Цифры в записи числа не повторяются). | Сколько различных трёхзначных чисел можно составить с помощью цифр 1, 3, 7? (Цифры могут повторяться). |
Трёхзначное число состоит из 3-ёх цифр, которые нам даны. Поскольку цифры не могут повторяться, то получать различные числа можно только путем их перестановки. Число перестановок из 3-ёх определяем по формуле Если цифры могут повторяться, то по разрядам их можно размещать независимо от друг от друга. Значит можем применить правило умножения вариантов (И-правило). Одну цифру из трёх для разряда сотен можно выбрять 3-мя способами, И одну цифру из тех же трёх для разряда десятков — 3-мя способами, И одну из трёх для разряда единиц — 3-мя способами. Общее число вариантов | |
Задача 9a | Задача 9b |
Сколько различных трёхзначных чисел можно составить с помощью цифр 7 и 3? | Сколько различных двузначных чисел можно составить при помощи цифр 4, 7, 9? (Цифры в записи числа не повторяются). |
Задача 10a | Задача 10b |
Сколько нечетных трёхзначных чисел можно составить из цифр 3, 4, 8, 6? (Цифры в записи числа не могут повторяться). | Сколько различных трёхзначных чисел можно составить из цифр 7, 6, 5, 0, если цифры в записи числа не могут повторяться? |
Искомое число должно оканчиваться цифрой 3, так как 4, 6 и 8 делятся на 2 без остатка. Поэтому позиция единиц у нас уже занята, и остается разместить 3 цифры на 2-ух позициях — десятков и сотен. Число размещений из 3 по 2 определяем по формуле Сначала определим, сколько всего можно составить групп из 4-ёх заданных цифр по 3 с учётом порядка следования и без повторений. | |
Задача 11a | Задача 11b |
Сколько четных трёхзначных чисел можно составить из цифр 3, 4, 5, 6? (Цифры в записи числа не могут повторяться). | Сколько четных трёхзначных чисел можно составить из цифр 3, 4, 5, 6? (Цифры в записи числа могут повторяться). |
Четными будут числа, оканчивающиеся на 4 ИЛИ на 6. Поэтому подсчитаем количество вариантов, заканчивающихся на одну из этих цифр, а затем воспользуемся правилом сложения (ИЛИ-правилом), чтобы определить общее число вариантов. Так же, как в предыдущем случае рассмотрим отдельно числа, заканчивающиеся 4-кой и 6-кой, а затем воспользуемся правилом сложения вариантов. | |
Задача 12a | |
Сколько различных дробей можно составить с использованием цифр 2, 3, 4? (В числителе и знаменателе не может быть одна и та же цифра.) | |
Заметим, что не только в числителе и знаменателе не может быть одна и та же цифра, но цифры вообще не могут повторяться, иначе задача не имела бы смысла. В число дробей входили бы, например, 2/3, 2/33, 2/333, 2/3333 и т.п. Таких вариантов бесконечное число. Если вы получили ответ 12, а не 18, обязательно разберитесь почему. Это иначе понятое условие задачи? Забыты неправильные дроби? Ошибка в комбинаторике? Комментарии.O формуле для числа сочетаний. O формуле для числа размещений. Выборки с повторениями. | |
Перейти на главную страницу сайта. | |