Сколькими способами можно выбрать по одному экземпляру каждого учебника

Презентация на тему: Основные принципы комбинаторики

Комбинаторика – раздел математики, посвященный подсчету количеств разных комбинаций элементов некоторого, обычно конечного, множества Комбинаторика – раздел математики, посвященный подсчету количеств разных комбинаций элементов некоторого, обычно конечного, множества Комбинаторика возникла в XVI веке. Первоначально комбинаторные задачи касались в основном азартных игр. Одним из первых занялся подсчетом числа различных комбинаций при игре в кости итальянский математик Тарталья. Теоретическое исследование вопросов комбинаторики предприняли в XVII веке французские ученые Паскаль и Ферма. Дальнейшие развитие комбинаторики связано с именами Якова Бернулли, Лейбница и Эйлера.

Основные принципы комбинаторики: Основные принципы комбинаторики: Принцип сложения. Принцип умножения. Принцип сложения Задача 1: В классе 7 девочек и 8 мальчиков. Сколькими способами можно выбрать 1 человека для работы у доски? Решение: Для работы у доски мы можем выбрать девочку 7 способами или мальчика 8 способами. Общее число способов равно 7+8=15. Задача 2: В классе 7 человек имеют «5» по математике, 9 человек – «5» по истории, 4 человека имеют «5» и по математике и по истории. Сколько человек имеют пятерку по математике или по истории? Решение: Так как 4 человека входят и в семерку отличников по математике и в девятку отличников по истории, то сложив «математиков» и «историков», мы дважды учтем этих четверых, поэтому вычтя их один раз из суммы, получим результат 7+9-4=12. Итак, 12 человек имеют пятерку по математике или по истории.

Принцип сложения 1: Если объект a можно получить n способами, объект b можно получить m способами и эти способы различны, то объект «a или b» можно получить n+m. Принцип сложения 1: Если объект a можно получить n способами, объект b можно получить m способами и эти способы различны, то объект «a или b» можно получить n+m. Принцип сложения 2: Если объект a можно получить n способами, объект b можно получить m способами, то объект «a или b» можно получить n+m-k способами, где k – это количество повторяющихся способов.

Задача: На вершину горы ведут 5 дорог. Сколькими способами можно подняться на гору и спуститься с нее? Задача: На вершину горы ведут 5 дорог. Сколькими способами можно подняться на гору и спуститься с нее? Решение: Для каждого варианта подъема на гору существует 5 вариантов спуска с горы. Значит всего способов подняться на гору и спуститься с нее 5∙5=25. Принцип умножения: если объект a можно получить n способами, объект b можно получить m способами, то объект «a и b» можно получить m∙n способами.

1) Из 10 коробок конфет, 8 плиток шоколада и 12 пачек печенья выбирают по одному предмету для новогоднего подарка. Сколькими способами это можно сделать? 1) Из 10 коробок конфет, 8 плиток шоколада и 12 пачек печенья выбирают по одному предмету для новогоднего подарка. Сколькими способами это можно сделать? Решение. Коробку конфет можно выбрать 10 способами, шоколад – 8, печенье – 12 способами. Всего по принципу умножения получаем способов.

2) В классе 24 человека. Из них 15 человек изучают английский язык, 12 – немецкий язык, 7 – оба языка. сколько человек не изучают ни одного языка? 2) В классе 24 человека. Из них 15 человек изучают английский язык, 12 – немецкий язык, 7 – оба языка. сколько человек не изучают ни одного языка? Решение. По принципу сложения 2 получим количество людей, изучающих английский или немецкий 15+12-7=20. Из общего числа учеников класса вычтем полученное количество людей. 24-20=4. 4 человека не изучает ни одного языка.

1) Из двух спортивных обществ, насчитывающих по 20 боксеров каждое, 1) Из двух спортивных обществ, насчитывающих по 20 боксеров каждое, надо выделить по одному боксеру для участия в состязаниях. Сколькими способами это можно сделать? Решение. По принципу умножения

2) Сколькими способами можно выбрать гласную и согласную букву в слове «экзамен»? 2) Сколькими способами можно выбрать гласную и согласную букву в слове «экзамен»? Решение. В слове «экзамен» 3 гласные буквы и 4 согласные. По принципу умножения

3) В классе 20 человек, из них 9 человек изучают язык программирования Бейсик, и 8 человек изучают Паскаль. Сколько человек не изучают языки программирования, если известно, что других языков в этом классе не изучают и каждый человек знает не более одного языка программирования? 3) В классе 20 человек, из них 9 человек изучают язык программирования Бейсик, и 8 человек изучают Паскаль. Сколько человек не изучают языки программирования, если известно, что других языков в этом классе не изучают и каждый человек знает не более одного языка программирования? Решение. По принципу сложения получим, что 9+8=17 человек изучают языки программирования. 20-17=3 человека не изучают языки программирования.

Читайте также:  Печать флексографским способом печати

4) От дома до школы существует 6 маршрутов. Сколькими способами можно дойти до школы и вернуться, если дорога «туда» и «обратно» идет по разных маршрутам? 4) От дома до школы существует 6 маршрутов. Сколькими способами можно дойти до школы и вернуться, если дорога «туда» и «обратно» идет по разных маршрутам? Решение. По принципу умножения

5) Из 3 экземпляров учебника алгебры, 5 экземпляров учебника геометрии и 7 экземпляров учебника истории нужно выбрать по одному экземпляру каждого учебника. Сколькими способами это можно сделать? 5) Из 3 экземпляров учебника алгебры, 5 экземпляров учебника геометрии и 7 экземпляров учебника истории нужно выбрать по одному экземпляру каждого учебника. Сколькими способами это можно сделать? Решение. По принципу умножения

6) В корзине лежат 15 яблок и 10 апельсинов. Яша выбирает из нее яблоко или апельсин, после чего Полина берет яблоко и апельсин. В каком случае Полина имеет большую свободу выбора: если Яша взял яблоко или если он взял апельсин? 6) В корзине лежат 15 яблок и 10 апельсинов. Яша выбирает из нее яблоко или апельсин, после чего Полина берет яблоко и апельсин. В каком случае Полина имеет большую свободу выбора: если Яша взял яблоко или если он взял апельсин? Решение. Если Яша взял яблоко, то по принципу умножения Полина может осуществить свой выбор способами. Если Яша взял апельсин, то — способами. В первом случае у Полины свобода выбора большая.

Определение 1 Определение 1 Размещением из n элементов по k называется всякая перестановка из k элементов, выбранных каким-либо способом из данных n. Пример Дано множество . Составим все 2-размещения этого множества.

Теорема 1 Число всех размещений из n элементов по k вычисляется по формуле Теорема 1 Число всех размещений из n элементов по k вычисляется по формуле Доказательство. Каждое размещение можно получить с помощью k действий: 1) выбор первого элемента n способами; 2) выбор второго элемента (n-1) способами; и т. д. k) выбор k –го элемента (n-(k-1))=(n-k+1) способами. По правилу умножения число всех размещений будет n(n-1)(n-2)…(n-k+1). Теорема доказана.

Замечание. Формулу для числа размещений можно записать в виде Замечание. Формулу для числа размещений можно записать в виде Действительно

Абонент забыл последние 3 цифры номера телефона. Какое максимальное число номеров ему нужно перебрать, если он вспомнил, что эти последние цифры разные? Абонент забыл последние 3 цифры номера телефона. Какое максимальное число номеров ему нужно перебрать, если он вспомнил, что эти последние цифры разные? Решение. Задача сводится к поиску различных перестановок 3 элементов из 10 ( так как всего цифр 10). Применим формулу для числа перестановок.

Определение 2 Определение 2 Размещением с повторением из n элементов по k называется всякая перестановка из k элементов, выбранных каким-либо способом из данных n элементов возможно с повторениями. Пример Дано множество Составим 2- размещения с повторениями:

Сколько существует номеров машин? Сколько существует номеров машин? Решение. Считаем, что в трех буквах номера машины не используются буквы «й», «ы», «ь», «ъ», тогда число перестановок букв равно . Число перестановок цифр равно . По правилу умножения получим число номеров машин

Определение 1 Определение 1 Перестановкой из n элементов называется всякий способ нумерации этих элементов Пример 1 Дано множество . Составить все перестановки этого множества. Решение.

Теорема 1. Число всех различных перестановок из n элементов равно n! Теорема 1. Число всех различных перестановок из n элементов равно n! Замечание. Например, Считают, что 0!=1

Доказательство теоремы 1. Доказательство теоремы 1. Любую перестановку из n элементов можно получить с помощью n действий: выбор первого элемента n различными способами, выбор второго элемента из оставшихся (n-1) элементов, т.е. (n-1) способом, выбор третьего элемента (n-2) способами, …… n) выбор n-го элемента 1 способом. По правилу умножения число всех способов выполнения действий, т.е. число перестановок, равно Теорема доказана.

Число всех перестановок обозначается Число всех перестановок обозначается Итак, Пример В команде 6 человек. Сколькими способами они могут построиться для приветствия? Решение Число способов построения равно числу перестановок 6 элементов, т.е.

Теорема 2 Теорема 2 Число перестановок n – элементов, в котором есть одинаковые элементы, а именно элементов i –того типа ( ) вычисляется по формуле где Доказательство. Так как перестановки между одинаковыми элементами не изменяют вид перестановки в целом, количество перестановок всех элементов множества нужно разделить на число перестановок одинаковых элементов.

Задача: Сколько слов можно составить, переставив буквы в слове «экзамен», а в слове «математика»? Задача: Сколько слов можно составить, переставив буквы в слове «экзамен», а в слове «математика»? Решение: В слове «экзамен» все буквы различны, поэтому используем формулу для числа перестановок без повторений В слове «математика» 3 буквы «а», 2 буквы «м», 2 буквы «т», поэтому число перестановок всех букв разделим на число перестановок повторяющихся букв:

Читайте также:  Производный способ перехода права собственности

1)Сколькими способами можно составить список из 8 учеников, если у них различные инициалы? 1)Сколькими способами можно составить список из 8 учеников, если у них различные инициалы? Решение Задача сводится к подсчету числа перестановок ФИО.

2)Сколькими способами можно составить список 8 учеников, так, чтобы два указанных ученика располагались рядом? 2)Сколькими способами можно составить список 8 учеников, так, чтобы два указанных ученика располагались рядом? Решение Можно считать двоих указанных учеников за один объект и считать число перестановок уже 7 объектов, т.е. Так как этих двоих можно переставлять местами друг с другом, необходимо умножить результат на 2!

3) Сколькими способами можно разделить 11 спортсменов на 3 группы по 4, 5 и 2 человека соответственно? 3) Сколькими способами можно разделить 11 спортсменов на 3 группы по 4, 5 и 2 человека соответственно? Решение. Сделаем карточки: четыре карточки с номером 1, пять карточек с номером 2 и две карточки с номером 3. Будем раздавать эти карточки с номерами групп спортсменам, и каждый способ раздачи будет соответствовать разбиению спортсменов на группы. Таким образом нам необходимо посчитать число перестановок 11 карточек, среди которых четыре карточки с одинаковым номером 1, пять карточек с номером 2 и две карточки с номером 3.

5)Сколько существует четырехзначных чисел, у которых все цифры различны? 5)Сколько существует четырехзначных чисел, у которых все цифры различны? Решение. В разряде единиц тысяч не может быть нуля, т.е возможны 9 вариантов цифры. В остальных трех разрядах не может быть цифры, стоящей в разряде единиц тысяч (так как все цифры должны быть различны), поэтому число вариантов вычислим по формуле размещений без повторений из 9 по 3 По правилу умножения получим

6)Сколько существует двоичных чисел, длина которых не превосходит 10? 6)Сколько существует двоичных чисел, длина которых не превосходит 10? Решение. Задача сводится к подсчету числа размещений с повторениями из двух элементов по 10

7)В лифт 9 этажного дома зашли 7 человек. Сколькими способами они могут распределиться по этажам дома? 7)В лифт 9 этажного дома зашли 7 человек. Сколькими способами они могут распределиться по этажам дома? Решение. Очевидно, что на первом этаже никому не надо выходить. Каждый из 7 человек может выбрать любой из 8 этажей, поэтому по правилу умножения получим Можно так же применить формулу для числа размещений с повторениями из 8 (этажей) по 7(на каждого человека по одному этажу)

8)Сколько чисел, меньше 10000 можно написать с помощью цифр 2,7,0? 8)Сколько чисел, меньше 10000 можно написать с помощью цифр 2,7,0? Решение. Так как среди цифр есть 0, то, например запись 0227 соответствует числу 227, запись 0072 соответствует числу 72, а запись 007 соответствует числу 7. Таким образом, задачу можно решить, используя формулу числа размещений с повторениями

Вопросы: Вопросы: Является ли перестановка – размещением? Сравнить выражения А и А Перечислите основные принципы комбинаторики. Сколькими способами могут совершить обмен 1 диска два студента, если у одного 7 дисков, а у другого 5?

Источник

Сколькими способами можно выбрать по одному экземпляру каждого учебника

Материалы этого сайта размещены для ознакомления, все права принадлежат их авторам.

Если Вы не согласны с тем, что Ваш материал размещён на этом сайте, пожалуйста, напишите нам, мы в течении 1-2 рабочих дней удалим его.

Добро пожаловать!

Найдите фактор-множества для данных отношений эквивалентности.

Решение. Построим фактор-множество для отношения 1. Класс эквивалентности, порожденный произвольным элементом (a1, a2 ) P, имеет вид [(a1,a2)]= <(x, y)P :((a1,a2),(x, y)) 1>= <(x, y)P : x = a1,a2 - y Z>= = <(x, y) P : k Z x = a1, a2 - y = k>= = <(x, y) P : k Z x = a1, y = a2 - k>= = <(a1, a2 - k) P : k Z >.

Таким образом, в класс эквивалентности, порожденный элементом (a1, a2 ) P a1 R, 0 a2

Примечание. Задачи 6, 7 решить также с помощью кругов Эйлера.

8. Сколько чисел среди первых 100 натуральных чисел не делятся ни на 2, ни на 3, ни на 5 Ответ: 74.

Указание. Количество натуральных чисел, делящихся на m и не преa восходящих a, равно целой части [ a/m ] числа.

m 9. Сколько чисел среди первых 1000 натуральных чисел, не делящихся ни на 3, ни на 4, ни на 5 Ответ: 400.

10. В корзине лежат 8 различных яблок и 7 различных груш. Сколькими способами можно взять плод из корзины Ответ: 15.

Правило произведения Правило произведения для двух объектов: Пусть объект a можно выбрать п способами, и после каждого такого выбора объект b можно выбрать т способами. Тогда выбор пары «a и b» в указанном порядке можно осуществить n т способами.

Пример 3. Сколькими способами можно выбрать гласную и согласную буквы из букв слова «студент» Решение. Гласную букву можно выбрать 2-мя способами, согласную можно выбрать 5-ю способами. По правилу произведения выбор «гласной и согласной» можно осуществлять 2 5 = 10 способами.

Пример 4. Сколько существует двузначных четных чисел в десятичной системе счисления Решение. Выбираются две цифры из множества <0,1,2. 8,9>. Первая цифра может быть любой, кроме нуля. Поэтому ее можно выбрать 9-ю способами. Вторая цифра может быть любой из множества <2,4,6,8,0>, ее можно выбрать 5-ю способами. Следовательно, четных двузначных чисел по правилу произведения будет n m = 45, где n = 9, m = 5.

Правило произведения является следствием теоремы о мощности прямого произведения конечного числа конечных множеств. В случае произвольного числа объектов оно формулируется следующим образом: Если объект a1 можно выбрать п1 способами, объект a2 – n2 способами. объект ak – nk способами, то общее число полученных таким образом упорядоченных наборов ( a1, a2, …, ak ) можно выбрать n1 n2 … nk способами.

Если требуется выполнить одно за другим одновременно k действий, на одно из которых наложено ограничение, то подсчет числа возможных комбинаций удобнее начинать с выполнения именно этого действия.

Пример 5. В микроавтобусе 10 мест, одно из которых – место водителя. Сколькими способами могут сесть в автобус 10 человек, если место водителя могут занять только трое из них.

Решение. Начнем с места водителя. Имеется n1 = 3 способа занять его место. Следующее место может занять любой из девяти оставшихся человек, т.е. n2 = 9 и т. д. По правилу произведения получаем всего возможностей n1 n2 n3 … n10 = 3987654321 = 39!.

ЗАДАЧИ И УПРАЖНЕНИЯ 11. Сколько существует двузначных чисел в 10-ной системе счисления, в которых нет одинаковых цифр Ответ: 81.

12. Сколько существует нечётных трехзначных чисел Ответ: 450.

13. На ферме есть 20 овец и 24 козы. Сколькими способами можно выбрать одну овцу и одну козу Если такой выбор уже сделан, сколькими способами можно сделать его еще раз Ответ: 480, 437.

14. Сколькими способами можно выбрать по одному экземпляру каждого учебника, если имеется 3 экземпляра учебника алгебры, 7 экземпляров учебника геометрии и 10 экземпляров учебника информатики Ответ: 210.

15. Сколькими способами можно выбрать из натуральных чисел от до 20 два числа так, чтобы их сумма была нечетным числом 16. Имеется 5 видов конвертов без марок и 4 вида марок. Сколькими способами можно выбрать конверт и марку для посылки письма Ответ: 20.

17. Сколькими способами можно выбрать согласную и гласную буквы из слова «здание» Из слова «кабинет» Ответ: 9.

18. В корзине лежат 12 яблок и 10 груш. Сын выбирает из нее яблоко или грушу, после чего дочь берет и яблоко, и грушу. В каком случае дочь имеет большую свободу выбора: если сын взял яблоко или если он взял грушу Ответ: Если сын выбрал яблоко.

19. Сколькими способами можно совершить круговой рейс из А в В и обратно, если на обратном пути выбирать новую дорогу и известно, что А и В соединены семью дорогами Ответ: 42.

20. У некоторых народов принято давать детям несколько имен.

Сколькими способами можно назвать ребенка, если ему дают не более трех имен, а общее число имен равно 300 Ответ: 26 820 600.

2.2 Упорядоченные и неупорядоченные выборки Понятие выборки Известно, что k-выборка из некоторого множества представляет собой комбинацию из к элементов этого множества. Выборки, в которых все элементы различны, называют выборками без повторений, в отличие от выборок с повторениями, в которые могут входить одинаковые элементы.

Выборка называется упорядоченной, если существенным является не только состав элементов в ней, но и порядок их расположения. Две упорядоченные k-выборки считаются различными, если они отличаются либо составом элементов, либо порядком их расположения. Например, упорядоченные выборки (1,2) и (2,1) считаются различными, хотя и составлены из одних и тех же элементов.

Выборка называется неупорядоченной, если порядок следования элементов в ней не существенен. Так, <1,2>и <2,1>считаются одной и той же неупорядоченной выборкой.

Фигурные и круглые скобки подчеркивают отличие неупорядоченной выборки от упорядоченной.

Пример 6. Составьте всевозможные 2-выборки из элементов множества М=<а, b, с>.

Решение. (а,b), (b,а), (а,с), (с,а), (b,с), (с,b) – это упорядоченные 2-выборки без повторений. Их, очевидно, всего 6.

(а,а); (а,b); (а,с); (b,b); (b,a); (b,c); (c,c); (c,a); (c,b) – упорядоченные 2-выборки с повторениями. Их всего 9.

, <а,с>, – неупорядоченные выборки без повторений. Легко видеть, что иx всего 3.

Источник

Читайте также:  Все способы получения so2
Оцените статью
Разные способы