Сколькими способами можно выбрать 2 журнала

КОМБИНАТОРИКА

Комбинаторика – раздел математики, который изучает задачи выбора и расположения элементов из некоторого основного множества в соответствии с заданными правилами. Формулы и принципы комбинаторики используются в теории вероятностей для подсчета вероятности случайных событий и, соответственно, получения законов распределения случайных величин. Это, в свою очередь, позволяет исследовать закономерности массовых случайных явлений, что является весьма важным для правильного понимания статистических закономерностей, проявляющихся в природе и технике.

Правила сложения и умножения в комбинаторике

Правило суммы. Если два действия А и В взаимно исключают друг друга, причем действие А можно выполнить m способами, а В – n способами, то выполнить одно любое из этих действий (либо А, либо В) можно n + m способами.

Пример 1.

В классе учится 16 мальчиков и 10 девочек. Сколькими способами можно назначить одного дежурного?

Дежурным можно назначить либо мальчика, либо девочку, т.е. дежурным может быть любой из 16 мальчиков, либо любая из 10 девочек.

По правилу суммы получаем, что одного дежурного можно назначить 16+10=26 способами.

Правило произведения. Пусть требуется выполнить последовательно k действий. Если первое действие можно выполнить n1 способами, второе действие n2 способами, третье – n3 способами и так до k-го действия, которое можно выполнить nk способами, то все k действий вместе могут быть выполнены:

Пример 2.

В классе учится 16 мальчиков и 10 девочек. Сколькими способами можно назначить двух дежурных?

Первым дежурным можно назначить либо мальчика, либо девочку. Т.к. в классе учится 16 мальчиков и 10 девочек, то назначить первого дежурного можно 16+10=26 способами.

После того, как мы выбрали первого дежурного, второго мы можем выбрать из оставшихся 25 человек, т.е. 25-ю способами.

По теореме умножения двое дежурных могут быть выбраны 26*25=650 способами.

Сочетания без повторений. Сочетания с повторениями

Классической задачей комбинаторики является задача о числе сочетаний без повторений, содержание которой можно выразить вопросом: сколькими способами можно выбрать m из n различных предметов ?

Пример 3.

Необходимо выбрать в подарок 4 из 10 имеющихся различных книг. Сколькими способами можно это сделать?

Нам из 10 книг нужно выбрать 4, причем порядок выбора не имеет значения. Таким образом, нужно найти число сочетаний из 10 элементов по 4:

.

Рассмотрим задачу о числе сочетаний с повторениями: имеется по r одинаковых предметов каждого из n различных типов; сколькими способами можно выбрать m () из этих (n*r) предметов?

.

Пример 4.

В кондитерском магазине продавались 4 сорта пирожных: наполеоны, эклеры, песочные и слоеные. Сколькими способами можно купить 7 пирожных?

Т.к. среди 7 пирожных могут быть пирожные одного сорта, то число способов, которыми можно купить 7 пирожных, определяется числом сочетаний с повторениями из 7 по 4.

.

Размещения без повторений. Размещения с повторениями

Классической задачей комбинаторики является задача о числе размещений без повторений, содержание которой можно выразить вопросом: сколькими способами можно выбрать и разместить по m различным местам m из n различных предметов?

Пример 5.

В некоторой газете 12 страниц. Необходимо на страницах этой газеты поместить четыре фотографии. Сколькими способами можно это сделать, если ни одна страница газеты не должна содержать более одной фотографии?

В данной задаче мы не просто выбираем фотографии, а размещаем их на определенных страницах газеты, причем каждая страница газеты должна содержать не более одной фотографии. Таким образом, задача сводится к классической задаче об определении числа размещений без повторений из 12 элементов по 4 элемента:

Таким образом, 4 фотографии на 12 страницах можно расположить 11880 способами.

Также классической задачей комбинаторики является задача о числе размещений с повторениями, содержание которой можно выразить вопросом: сколькими способами можно выбрать и разместить по m различным местам m из n предметов, среди которых есть одинаковые?

Пример 6.

У мальчика остались от набора для настольной игры штампы с цифрами 1, 3 и 7. Он решил с помощью этих штампов нанести на все книги пятизначные номера– составить каталог. Сколько различных пятизначных номеров может составить мальчик?

Можно считать, что опыт состоит в 5-кратном выборе с возращением одной из 3 цифр (1, 3, 7). Таким образом, число пятизначных номеров определяется числом размещений с повторениями из 3 элементов по 5:

.

Перестановки без повторений. Перестановки с повторениями

Классической задачей комбинаторики является задача о числе перестановок без повторения, содержание которой можно выразить вопросом: сколькими способами можно разместить n различных предметов на n различных местах?

Пример 7.

Сколько можно составить четырехбуквенных «слов» из букв слова«брак»?

Генеральной совокупностью являются 4 буквы слова «брак» (б, р, а, к). Число «слов» определяется перестановками этих 4 букв, т. е.

Для случая, когда среди выбираемых n элементов есть одинаковые (выборка с возвращением), задачу о числе перестановок с повторениями можно выразить вопросом: сколькими способами можно переставить n предметов, расположенных на n различных местах, если среди n предметов имеются k различных типов (k

Пример 8.

Сколько разных буквосочетаний можно сделать из букв слова «Миссисипи»?

Здесь 1 буква «м», 4 буквы «и», 3 буквы «c» и 1 буква «п», всего 9 букв. Следовательно, число перестановок с повторениями равно

ОПОРНЫЙ КОНСПЕКТ ПО РАЗДЕЛУ «КОМБИНАТОРИКА»

Источник

Сколькими способами можно выбрать 2 журнала

Вопрос по алгебре:

Из 9 книг и 6 журналов надо выбрать 2 книги и 3 журнала. Сколькими способами это можно сделать?

Ответы и объяснения 2

Количество способов выбрать 2 книги из 9 равно числу сочетаний из 9 по 2.
Поэтому

Количество способов выбрать 3 журнала из 6 равно числу сочетаний из 6 по 3.
Поэтому

Так как на каждые две книги, выбранные 36 способами, можно подобрать три журнала, выбранных 20 способами, то нам следует перемножить полученные результаты.

Читайте также:  Способ приготовления льняного масла

Ответ: 720 способами.

Книги выбираются следующими способами:
9*8/2=36, то есть первая — 9, вторая — 8, но каждая пара уже посчитана 2 раза — книга х-книга у и книга у-книга х.

Журналы выбираются следующими способами:
6*5*4/(2*3)=20, то есть первый — 6, второй — 5, третий — 4 способами, но каждая тройка посчитана 6 раз: xyz, xzy, yxz, yzx, zxy, zyx.

На каждую различную пару книг (всего их 36) можно подобрать тройку журналов 20 способами, итого получается: 36*20=720.

Знаете ответ? Поделитесь им!

Как написать хороший ответ?

Чтобы добавить хороший ответ необходимо:

  • Отвечать достоверно на те вопросы, на которые знаете правильный ответ;
  • Писать подробно, чтобы ответ был исчерпывающий и не побуждал на дополнительные вопросы к нему;
  • Писать без грамматических, орфографических и пунктуационных ошибок.

Этого делать не стоит:

  • Копировать ответы со сторонних ресурсов. Хорошо ценятся уникальные и личные объяснения;
  • Отвечать не по сути: «Подумай сам(а)», «Легкотня», «Не знаю» и так далее;
  • Использовать мат — это неуважительно по отношению к пользователям;
  • Писать в ВЕРХНЕМ РЕГИСТРЕ.
Есть сомнения?

Не нашли подходящего ответа на вопрос или ответ отсутствует? Воспользуйтесь поиском по сайту, чтобы найти все ответы на похожие вопросы в разделе Алгебра.

Трудности с домашними заданиями? Не стесняйтесь попросить о помощи — смело задавайте вопросы!

Алгебра — раздел математики, который можно нестрого охарактеризовать как обобщение и расширение арифметики.

Источник

Решение комбинаторных задач. Сочетания

Сочетания. Формула для числа сочетаний

Сочетания (без повторений)

Пусть множество Х состоит из n элементов.

Определение. Любое k -элементное подмножество Y множества Х называется сочетанием из n элементов по k .

Очевидно, что k должно быть не больше n .

Число всех сочетаний из n элементов по k обозначается символом и вычисляется по формуле:

(4)

В частности, что согласуется с тем, что у любого множества Х имеется только одно подмножество из нуля элементов ( пустое подмножество ), и только одно подмножество из n элементов (совпадающее с самим множеством X ).

При рассмотрении сочетаний очень мощно используется теория множеств!

Докажем формулу (4).

Пусть Y какое-либо произвольное подмножество множества Х , содержащее k элементов (то есть сочетание из n элементов по k ). Число таких подмножеств обозначим символом . Необходимо выяснить, чему равно это число.

Составляя, всевозможные перестановки из элементов этого множества Y получим k ! различных строк длиной k . Если указанную операцию проделать с каждым подмножеством Y содержащим k элементов, то получим всего различных строк, длиной k . С другой стороны, таким образом должны получиться все без исключения строки, длиной k без повторений, которые можно составить из элементов множества Х . Число таких строк равно , следовательно, . Выражая из этого равенства , получим:

. Формула (4) доказана.

Числа называют биномиальными коэффициентами – они входят в формулу бинома Ньютона, изучение которого также входит в программу по математике для профильных классов.

Числа обладают рядом замечательных свойств:

1. (доказывается непосредственно по формуле (4));

2. (можно доказать с помощью известной теоремы из теории множеств о том, что число различных подмножеств n — элементного множества равно 2 n ; другой способ доказательства — комбинаторный);

3. для любых (доказывается с помощью формулы (4)); на основе этого свойства строится знаменитый треугольник Паскаля.

Таблица 1.Треугольник Паскаля

Заметим, что Блез Паскаль называл числовой треугольник, начало которого содержится в таблице 1, арифметическим . Паскаль посвятил свойствам арифметического треугольника основополагающий «Трактат об арифметическом треугольнике» (1654). Справедливости ради, стоит упомянуть, что биномиальные коэффициенты были хорошо известны в Азии за много веков до рождения Паскаля. В Италии треугольник Паскаля называют треугольником Тартальи.

Из определения сочетания следует, что если спрашивается «Сколькими способами можно выбрать k объектов из n ?», то нужно отвечать: «числом способов».

Пример. Во взводе 5 сержантов и 50 солдат. Сколькими способами можно составить наряд из одного сержанта и трёх солдат.

Решение. Одного сержанта из пяти можно выбрать 5-ю разными способами. Для любого из этих способов выбора сержанта трёх солдат (порядок тройки не важен) из 50-ти можно выбрать числом способов. Тогда по правилу произведения весь наряд, то есть одного сержанта и трёх солдат, можно выбрать способами.

Подобные задачи очень часто встречаются в комбинаторике и в теории вероятностей. Поэтому рассмотрим модель этой задачи и её решение.

Пусть имеется n объектов I типа и m объектов II типа. Сколькими способами можно выбрать из них k объектов I типа и s объектов II типа?

Условие задачи рекомендуется оформить таблицей, чтобы не запутаться в числах при составлении числа сочетаний.

объектов

объектов

объектов

объектов

Тогда объектов I типа из можно выбрать числом способов. Для каждого из этих способов выбора объектов I типа объектов II типа из имеющихся можно выбрать числом способов. Применяя правило произведения, получаем ответ:.

Аналогично решается задача для объектов трёх, четырёх и т.д. типов.

К подобной задаче сводятся задачи, в которых известно общее количество имеющихся объектов и общее количество тех, которые нужно выбрать.

Пример. В классе 36 человек, из которых 6 – отличники. Сколькими способами можно разбить класс на два класса по 18 человек так, чтобы отличников в каждом классе было поровну?

Решение. Разбить класс на две части по 18 человек – это всё равно, что выбрать 18 человек из 36. Отобранные 18 человек составляют один класс, оставшиеся – другой. Оформим условие задачи в указанном выше виде.

I тип — отличники

Есть 36 человек:

27 не отличников

15 не отличников

Читайте также:  Фертика для хвойных способ применения

Ответ: способов.

1. Ф. У лесника 3 собаки: Астра (А), Вега (В) и Гриф (Г). На охоту лесник решил пойти с двумя собаками. Перечислить все варианты выбора лесником пары собак.

Это задача о выборе двух элементов из трех без учета порядка. Перечислим варианты выбора из А, Б, В по два: А, Б; А, В; Б, В. Если учащиеся знают формулу для числа сочетаний, то количе­ство вариантов равно: =3.

Ответ: 3 варианта.

2. Ф. Сколько существует способов выбрать троих ребят из четверых желающих дежурить по столовой?

Количество сочетаний из 4 по 3 (порядок выбора не имеет зна­чения) равно: = 4. Иначе можно рассуждать так. Вместо выбора троих дежурных выберем одного, который не будет дежурить, а трех оставшихся отправим на дежурство. Количество способов выбрать одного из четверых ребят равно 4.

Ответ: 4 способа.

М-задачи из уч. пособия А.Г.Мордковича

Т- под ред. С.А.Теляковского

3. Т. В классе 7 человек успешно занимаются матема­тикой. Сколькими способами можно выбрать из них двоих для уча­стия в математической олимпиаде?

Выбираем 2 учащихся из 7, порядок выбора не имеет значения (оба выбранных пойдут на олимпиаду как полностью равноправ­ные); количество способов выбора равно числу сочетаний из 7 по 2: способ.

Ответ: 21 способ.

4. Т. В магазине «Филателия» продается 8 различных наборов марок, посвященных спортивной тематике. Сколькими способами можно выбрать из них 3 набора?

Выбор из 8 по 3 без учета порядка: = 56 способов.

Ответ: 56 способов.

5. Т. Учащимся дали список из 10 книг, которые ре­комендуется прочитать во время каникул. Сколькими способами ученик может выбрать из них 6 книг?

Выбор 6 из 10 без учета порядка: способов.

Ответ: 210 способов.

6. Т. Из лаборатории, в которой работают заведую­щий и 10 сотрудников, надо отправить 5 человек в командировку. Сколькими способами это можно сделать, если:

а) заведующий лабораторией должен ехать в командировку;

б) заведующий лабораторией должен остаться?

Из 11 человек 5 должны поехать в командировку.

а) Заведующий едет, нужно выбрать еще 4 из 10 оставшихся:способов.

в) Заведующий остается, нужно выбрать 5 из 10 сотрудников: способа.

Ответ: а) 210 способов; б) 252 способа.

7. Т. В библиотеке читателю предложили на выбор из новых поступлений 10 книг и 4 журнала. Сколькими cnocoбами он может выбрать из них 3 книги и 2 журнала?

Нужно сделать два выбора: 3 книги из 10 ( способов) и 2 журнала из 4 ( способов) ; порядок выбора не имеет значения. Каждый выбор книг может сочетаться с каждым выбором журналов, поэтому общее число способов выбора по правилу произведения равно: способов.

Ответ: 720 способов.

8. Т. Из 12 солдат, в число которых входят Иванов и Петров, надо отправить в наряд трех человек. Сколькими способами это можно сделать, если:

а) Иванов и Петров должны пойти в наряд обязательно;

б) Иванов и Петров должны остаться;

в) Иванов должен пойти в наряд, а Петров – остаться?

Выбираем три элемента из 12; порядок выбора не имеет значения (все трое идут в наряд).

а) Иванов и Петров идут в наряд, еще одного нужно выбрать из других 10 солдат; количество способов: С= 10.

б) Иванов и Петров не идут в наряд; троих идущих в наряд нужно выбрать из других 10 солдат; количество способов: способов.

в) Иванов идет в наряд, а Петров остается. Еще двоих, идущих в наряд с Ивановым, нужно выбрать из других 10 солдат ( Иванова и Петрова не считаем); количество способов:

Ответ: а) 10способов; б) 120 способов; в) 45 способов.

9. Т. В классе учатся 16 мальчиков и 12 девочек. Для уборки территории требуется выделить четырех мальчиков и трех девочек. Сколькими способами это можно сделать?

Нужно сделать два выбора: 4 мальчиков из 16 ( всего способов); порядок выбора значения не имеет ( все идущие на уборку равноправны). Каждый вариант выбора мальчиков может сочетаться с каждым выбором девочек,

Поэтому по правилу произведения общее число способов выбора равно:

способов.

Ответ: 400 400 способов.

10. В 9 «А» классе учатся 25 учащихся, в 9 «Б» -20 учащихся, а в 9 «В» — 18 учащихся. Для работы на пришкольном участке надо выделить трех учащихся из 9 «А», двух — из 9 «Б» и одного — из 9 «В». Сколько существует способов выбора учащихся для работы на пришкольном участке?

Выбор из трех совокупностей без учета порядка; каждый вари­ант выбора из первой совокупности () может сочетаться с каж­дым вариантом выбора из второй (С) и с каждым вариантом вы­бора из третьей (С); по правилу произведения получаем:

способов выбора учащихся

Ответ: 1 866 000 способов.

11. Т. Сколькими способами группу из 12 человек можно разбить на две группы: а) по 4 и 8 человек; б) по 5 и 7 чело­век?

Количество способов разбиения множества на две части равно количеству способов формирования одной из частей (любой). По­скольку порядок расположения элементов не учитывается, имеем:

а)способов разбиения на 4 и 8 элементов.

б) способов разбиения на 5 и 7 элементов.

Ответ: а) 495 способов; б) 792 способа.

Замечание. Задача иллюстрирует свойство биноминальных коэффициентов:

12. Т. В отделе работают 5 ведущих и 8 старших на­учных сотрудников. В командировку надо послать двух ведущих и трех старших научных сотрудников. Сколькими способами может быть сделан выбор сотрудников, которых надо послать в команди­ровку?

Выбор из двух разных совокупностей без учета порядка; каж­дый вариант выбора из первой совокупности (их С) может соче­таться с каждым вариантом выбора из второй совокупности (их С), по правилу произведения общее число способов выбрать со­трудников, уезжающих в командировку, равно:

Читайте также:  Микро клизма одноразовая способ применения

= 560 способов.

Ответ: 560 способов.

13. М. Встретились 11 футболистов и 6 хоккеистов, и каждый стал по одному разу играть с каждым в шашки.

а) Сколько встреч было между футболистами?

б) Сколько встреч было между хоккеистами?

в) Сколько встреч было между футболистами и хоккеистами?

г) Сколько встреч было всего?

а) Выбираем пары из 11футболистов без учета порядка; количество возможных встреч:

б) Выбираем пары из 6 хоккеистов без учета порядка; количество встреч равно:

в) Количество пар «футболист — хоккеист» найдем по правилу
произведения: выбрать 1 футболиста можно 11 способами, поел
этого выбрать одного хоккеиста можно 6 способами; количество
разных выборов «футболист, затем хоккеист» равно 11 = 66.Количество встреч между футболистами и хоккеистами равно 66.

г) Общее количество встреч равно количеству пар из 11 + 6 = 17 элементов без учета порядка: Понятно, что сумма первых трех величин должна равняться по­следней: 55+ 15 + 66 = 136.

Ответ: а) 55; б) 15; в) 66; г) 136.

14. М. В правильном 17-угольнике провели все диаго­нали.

а) Сколько всего получилось отрезков?

б) Сколько имеется сторон?

в) Сколько провели диагоналей?

г) Сколько всего диагоналей в выпуклом n -угольнике?
Решение.

Правильный многоугольник имеет 17 вершин; никакие три из этих 17 точек не лежат на одной прямой.

а) Общее число отрезков равно количеству пар из 17 точек без учета порядка :

б) Стороны соединяют только соседние точки (точки, расстояние между которыми наименьшее). Поэтому количество сторон равно количеству интервалов между 18 точками на прямой (чтобы получить замкнутую линию, будем считать, что 1-я и 18-я точки совпадают). Количество интервалов между n точками на прямой равно n — 1, поэтому количество сторон 17-угольника равно 18 — 1 = = 17.

Можно рассуждать иначе. Пронумеруем вершины 17-уголь­ника. Из каждой вершины, начиная с первой, исходит сторона 17-угольника, которая заканчивается в следующей по номеру вер­шине. Сторона, исходящая из 17-й вершины, заканчивается в вершине № 1. Поэтому количество сторон равно количеству вершин, т. е. 17.

в) Диагональю 17-угольника будет отрезок, соединяющий каж­дую вершину с каждой из вершин, не являющихся соседними для данной, т. е. с 17 — 1 — 2 = 14 разными вершинами (мы вычли 1 -вершину, из которой исходит диагональ, и 2 — две соседние вершины). Таким образом, из каждой вершины 17-угольника исходит 14 диагоналей. Но произведение 17 будет включать каждую диагональ дважды (сначала как исходящую из i -й вершины в k -ю, потом как исходящую из k -й вершины в i -ю). Поэтому общее количество диагоналей равно = 119. Понятно, что количество сторон плюс количество диагоналей должно равняться количеству отрезков:

г) В выпуклом n -угольнике из каждой вершины можно провес­ти n — 1 — 2 = n -3 диагонали; общее количество диагоналей равно (объяснение такое же, как в пункте в).

Ответ: а) 136; б) 17; в) 119; г)

15. М. Встретились несколько человек и стали здоро­ваться друг с другом. Известно, что рукопожатий было от 60 до 70. Сколько человек встретились, если известно, что:

а) каждый здоровался с каждым;

б) только один человек не здоровался ни с кем;

в) только двое не поздоровались между собой;

г) четверо поздоровались только между собой.

а) Число рукопожатий равно числу различных пар из п элемен­тов без учета порядка выбора, поэтому: 60 ; 6070; 120 — n 140;

Можно решать двойное неравенство и выбрать натуральное п из полученного интервала. Однако в этом простейшем случае легко находится подбором: n = 12. При n = 11 n 2 — n = 110, а при n = 13 n 2 — n = 156.

б) Если один человек не здоровался ни с кем, то пары образо­вывались из n — 1 элемента, т. е. 60; 120 ( n — 1) ( n — 2) 140; поскольку 1211 =132, то n = 13.

в) Если двое не поздоровались между собой, то количество рукопожатий было на 1 меньше: 60; 61
122п(п-1)142. Поскольку 1211 = 132, то n = 12.

Ответ: а) 12; б) 13; в) 12; г) 15.

Афанасьев В.В. Теория вероятностей в примерах и задачах, — Ярославль: ЯГПУ , 1994.

Баврин И. И. Высшая математика: Учебник для студентов химико-математических специальностей педагогических вузов-2-е издание, переработанное. — М.:Просвещение, 1993.

Бунимович Е. А., Булычёв В.А. Вероятность и статистика. 5-9 классы: Пособие для общеобразовательных учебных заведений, — М.:Дрофа , 2005.

Виленкин Н. Я. и другие. Алгебра и математический анализ для 10 класса: Учебное пособие для учащихся школ и классов с углублённым изучением математики. — М.:Просвещение,1992.

Виленкин Н. Я. и другие. Алгебра и математический анализ для 11 класса: Учебное пособие для учащихся школ и классов с углублённым изучением математики — М.:Просвещение, 1990.

Глейзер Г.И. История математики в школе: 9-10 класс. Пособие для учителей. — М.: Просвещение 1983.

Дорофеев Г.В., Суворова С.Б., Бунимович Е.А. Математика 9:Алгебра. Функции. Анализ данных — М.: Дрофа, 2000.

Колягин и другие. Алгебра и начала анализа 11 класс. Математика в школе — 2002 — №4 — с.43,44,46.

Люпшкас В.С. Факультативные курсы по математике: теория вероятностей: Учебное пособие для 9-11 классов.- М.,1991.

Макарычев Ю.Н., Миндюк Н.Г. Элементы статистики и теории вероятностей: Учебное пособие для учащихся 7-9 классов.- М.: Просвещение, 2005.

Мордкович А.Г., Семенов П.В. Алгебра и начала анализа 10 класс: Учебник для общеобразовательных учреждений (профильный уровень) – М.: Мнемозина, 2005.

Ткачева М.В., Федорова Н.Е. Элементы статистики и вероятность: Учебное пособие для учащихся 7-9 классов.- М.: Просвещение, 2005.

Источник

Оцените статью
Разные способы