- Практическая работа: «Комбинаторика»
- Просмотр содержимого документа «Практическая работа: «Комбинаторика»»
- Сколькими разными способами можно назначить двух ребят на дежурство по столовой если в классе 24 человека?
- В классе 12 мальчиков и 10 девочек?
- Помогите пожалуйста решить задачу для 6 класса :сколькими разными способами можно назначить двух ребят на дежурство по столовой, если в классе 25 учащихся?
- В классе 13 девочек и 10 мальчиков?
- Сколькими разными способами можно назначить двух ребят на дежурство по столовой, если в классе 25 учащихся?
- В классе 12 девочек и 16 мальчиков?
- В 4″Б» учится 25 человек?
- Реши задачу : в двух пачках 240 тетрадей, причём в одной из них в три раза больше чем в другой?
- В июне 7 ребят из нашего класса поедут в лагерь, 15 — на дачи, четверо останутся дома?
- Для дежурства в классе в течение недели выделены 6уч?
- В июне 7 ребят из нашего класса поедут в лагерь, 15 — на дачи, четверо останутся дома?
- Практическое занятие на тему «Основные комбинаторные конфигурации»
Практическая работа: «Комбинаторика»
Работа для проверки знаний по теме «Комбинаторика».
Просмотр содержимого документа
«Практическая работа: «Комбинаторика»»
Практическая работа: «Комбинаторика»
Практическая работа: «Комбинаторика»
Сколькими способами можно рассадить пятерых детей на пяти стульях в столовой детского сада?
Сколькими способами можно установить дежурство по одному человеку в день среди 6 (5, 7) учащихся класса в течение 6 (5, 7) дней?
Сколько различных семизначных чисел, не содержащих одинаковых цифр, можно записать с помощью цифр 0, 1, 2, 3, 4, 5, 6 так чтобы: 1) последней была цифра 0, 2) первой была цифра 4, 3) первой цифра 3, а последней цифра 5?
1. Сколькими способами можно рассадить пятерых детей на пяти стульях в столовой детского сада?
2. Сколькими способами можно установить дежурство по одному человеку в день среди 4 (8, 9) учащихся класса в течение 4 (8, 9) дней?
3. Сколько различных восьмизначных чисел, не содержащих одинаковых цифр, можно записать с помощью цифр 0, 1, 2, 3, 4, 5, 6, 7 так чтобы: 1) последней была цифра 0, 2) первой была цифра 4, 3) первой цифра 3, а последней цифра 5?
Сколько существует способов для обозначения с помощью букв A, B, C, D, E, F, G вершин данного: 1) треугольника, 2) пятиугольника?
В классе 25 учеников. Сколькими способами из их числа можно сделать назначение: 1) физорга и культорга, 2) физорга, культорга и казначея?
В шахматном турнире участвуют: 1) 6 юношей и 2 девушки, 2) 5 юношей и 3 девушки. Сколькими способами могут распределиться места среди участников, если все наберут разное количество очков?
Сколько существует способов для обозначения с помощью букв A, B, C, D, E, F, G вершин данного: 1) четырехугольника, 2) шестиугольника?
В классе 27 учеников. Сколькими способами из их числа можно сделать назначение: 1) физорга и культорга, 2) физорга, культорга и казначея?
3. В шахматном турнире участвуют: 1) 7 юношей и 2 девушки, 2)5 юношей и 4 девушки. Сколькими способами могут распределиться места среди участников, если все наберут разное количество очков?
3. Сочетания С n m =
1. Сколькими способами для участия в соревнованиях из 9 человек можно выбрать: 1) 4 студентов, 2) 5 студентов?
2. На плоскости отмечено: 1) 16 точек, 2) 13 точек, причем никакие 3 из низ не лежат на одной прямой. Сколько различных отрезков можно построить, соединяя эти точки попарно?
3. На окружности отмечено: 1) 7 точек, 2) 8 точек. Сколько различных треугольников с вершинами, выбранными из этих точек, можно построить?
3. Сочетания С n m =
1. Сколькими способами для участия в соревнованиях из 11 человек можно выбрать: 1) 6 студентов, 2) 7 студентов?
2. На плоскости отмечено: 1) 15 точек, 2) 14 точек, причем никакие 3 из низ не лежат на одной прямой. Сколько различных отрезков можно построить, соединяя эти точки попарно?
3. На окружности отмечено: 1) 5 точек, 2) 10 точек. Сколько различных треугольников с вершинами, выбранными из этих точек, можно построить?
Источник
Сколькими разными способами можно назначить двух ребят на дежурство по столовой если в классе 24 человека?
Математика | 5 — 9 классы
Сколькими разными способами можно назначить двух ребят на дежурство по столовой если в классе 24 человека.
Напишите пожалуйста как можно записать объяснения решения в тетрадь.
И получаешь сколько пар у тебя будет на каждое дежурство.
В классе 12 мальчиков и 10 девочек?
В классе 12 мальчиков и 10 девочек.
Сколькими способами можна назначить одного дежурного в этом классе?
Нужно объяснение, решение и ответ.
Помогите пожалуйста решить задачу для 6 класса :сколькими разными способами можно назначить двух ребят на дежурство по столовой, если в классе 25 учащихся?
Помогите пожалуйста решить задачу для 6 класса :
сколькими разными способами можно назначить двух ребят на дежурство по столовой, если в классе 25 учащихся?
С решением пожалуйста
обязательно выберу лучший ответ.
В классе 13 девочек и 10 мальчиков?
В классе 13 девочек и 10 мальчиков.
Сколькими различными способами можно назначить двух дежурных (мальчик + девочка)?
Сколькими разными способами можно назначить двух ребят на дежурство по столовой, если в классе 25 учащихся?
Сколькими разными способами можно назначить двух ребят на дежурство по столовой, если в классе 25 учащихся?
Я знаю что ответ 300.
Но как найти 300 и откуда не пнимаю помогите срочно надо).
В классе 12 девочек и 16 мальчиков?
В классе 12 девочек и 16 мальчиков.
Сколькими способами можно выбрать двух ребят одного пола для дежурства по классу?
В 4″Б» учится 25 человек?
В 4″Б» учится 25 человек.
Сколькими способами можно назначить двух дежурных по классу.
Реши задачу : в двух пачках 240 тетрадей, причём в одной из них в три раза больше чем в другой?
Реши задачу : в двух пачках 240 тетрадей, причём в одной из них в три раза больше чем в другой.
Сколько тетрадей в каждой пачке И решение как записать.
В июне 7 ребят из нашего класса поедут в лагерь, 15 — на дачи, четверо останутся дома?
В июне 7 ребят из нашего класса поедут в лагерь, 15 — на дачи, четверо останутся дома.
Сколько учеников в нашем классе?
Помогите записать решение задачи разными способами.
Для дежурства в классе в течение недели выделены 6уч?
Для дежурства в классе в течение недели выделены 6уч.
Сколькими способами можно установить очередность дежурств, если каждый уч.
В июне 7 ребят из нашего класса поедут в лагерь, 15 — на дачи, четверо останутся дома?
В июне 7 ребят из нашего класса поедут в лагерь, 15 — на дачи, четверо останутся дома.
Сколько учеников в нашем классе?
Помогите записать решение задачи разными способами.
Вы открыли страницу вопроса Сколькими разными способами можно назначить двух ребят на дежурство по столовой если в классе 24 человека?. Он относится к категории Математика. Уровень сложности вопроса – для учащихся 5 — 9 классов. Удобный и простой интерфейс сайта поможет найти максимально исчерпывающие ответы по интересующей теме. Чтобы получить наиболее развернутый ответ, можно просмотреть другие, похожие вопросы в категории Математика, воспользовавшись поисковой системой, или ознакомиться с ответами других пользователей. Для расширения границ поиска создайте новый вопрос, используя ключевые слова. Введите его в строку, нажав кнопку вверху.
= — 0, 96b + 3 — 2, 9b + 8 — 16 + 6b = ( — 0, 96b — 2, 9b + 6b) + (3 + 8 — 16) = 2, 14b — 5 приb = — 9 / 13 2, 14 * ( — 9 / 13) — 5 = 214 / 100 * ( — 9 / 13) — 5 = — 1 313 / 650 — 5 = — 6 313 / 650 Пояснение : 214 / 100 * ( — 9 / 13) = — 1926 / 1300 ..
S = π * r² площадь круга S = 3, 14 * 5² = 3, 14 * 25 = 78, 5см² площадь круга 10 * 10 = 100см² площадь квадрата 100 — 78, 5 = 21, 5см² площадь закрашенной части квадрата.
S = 1 × a×h — 2 Нужно просто сосчитать клетки . S = 1×4×10 = 20 см в квадрате — 2.
Икс — 17 = 36 Икс = 36 + 17 Икс = 53.
X — 17 = 36 x = 36 + 17 x = 53 Ответ : 53.
R = 3 (радиус) l = 4 (образующая) Площадь боковой поверхности конуса находится по формуле : S = pi * R * l = 12 * pi.
Решений систем уравнений с помощью матриц. 1)Методом Гаусса 2)Метод Крамера 3)Методом обратной матрицы.
Сложение и умножение : 56 + 78 ; 8 * 7 ; 76 + 6.
18 / 90 = 2 / 10 = 1 / 5 Или 18 / 90 = 9 / 45 = 1 / 5.
Источник
Практическое занятие на тему «Основные комбинаторные конфигурации»
Практическое занятие (2ч.)
Тема: Основные комбинаторные конфигурации .
научить применять комбинаторные конфигурации при решении задач;
сформировать умение находить нужную комбинаторную формулу при решении задачи;
формирование самостоятельности студента на занятии.
Математика / приложение к газете «Первое сентября», №15, 2004 г.
Стойлова Л.П. Математика.-М.: Изд. Центр Академия, 1997.
Прикладная комбинаторная математика.
Вариативная самостоятельная работа.
Повторение основных формул необходимых при решении комбинаторных задач.
Размещения с повторениями.
Задача 1. Сколько различных четырехзначных чи сел можно составить из цифр 2, 6, 7, 8 и 9, если каждая цифра может входить в комбинацию несколько раз?
Решение. Здесь порядок цифр существенен (2678 или 6278 — это разные числа). Поэтому имеем дело с кортежем длины 4 (четырехзначное число), каждый элемент которого можно выбрать пятью способами (цифр дано пять). Поэтому число различных комби наций равно 4 5 = 1024.
Задача 2. На референдуме предложены четыре вопроса, на которые надо ответить «да» или «нет». Сколько есть возможностей заполнения бюллетеня (на все вопросы надо дать ответ)?
Решение. Получаем кортеж длины 4 (столько во просов в бюллетене), каждый элемент может быть вы бран двумя способами («да» или «нет»). Поэтому число различных возможностей равно 2 4 =16.
Задача 3 . Неудовлетворенные решением Париса Гера, Афина и Афродита обратились к трем мудре цам с просьбой назвать прекраснейшую из них. Каж дый из мудрецов высказал свое мнение. Сколько мог ло возникнуть вариантов ответа на поставленный во прос у этой тройки?
Решение. Здесь вновь кортеж длиной 3 (три муд реца), каждый элемент которого может быть выбран шестью способами. Поэтому число различных возмож ностей равно 6 3 = 216.
Задача 4 . У Лены есть восемь красок. Она хочет написать ими слова «Новый Год». Сколькими спосо бами она может это сделать, если собирается каждую букву раскрашивать одним цветом?
Решение . Кортеж длиной 8 (восемь букв), каждый элемент может быть выбран восемью способами (во семь красок). Поэтому число способов равно 8 8 .
Задача 5. На железнодорожной станции имеется я семафоров. Сколько может быть дано различных сигналов при помощи этих семафоров, если каждый семафор имеет три состояния: горит либо зеленый, либо желтый, либо красный свет.
Решение. Имеем кортеж длины n (дано n семафо ров), каждый элемент которого можно выбрать тре мя способами (каждый семафор имеет три состояния). Поэтому различных сигналов можно дать 3 n .
Задачи для домашней работы
Сколько букв русского алфавита можно зако дировать, используя лишь комбинации точек и тире, содержащие только три знака?
Переплетчик должен переплести 12 различных книг в красный, зеленый и коричневый переплеты. Сколькими способами он может это сделать?
Задача 1. Из спортивного клуба, насчитывающего 30 членов, надо составить команду из четырех чело век для участия в эстафете на 100 + 200 + 400 + 800 (м). Сколькими способами это можно сделать?
Решение. Имеем кортежи длиной 4. Ни один элемент не может входить дважды (один бегун на один отрезок дистанции). Значит,
А 4 30 = =27·28·29·30 = 657 720.
Задача 2. Сколькими способами можно обозначить вершины данного треугольника, используя буквы А, В, С, D , E и F ?
Решение. Имеем кортежи длиной 3 (у треугольника три вершины). Ни один элемент не может входить дважды. Значит,
А 3 5=
Задачи для домашней работы
Сколько всего различных пятизначных чисел, не содержащих нуля?
В классе изучают девять предметов. Скольки ми способами можно составить расписание на поне дельник, если в этот день должно быть шесть разных уроков?
Перестановка без повторений.
Задача 1. Сколькими способами можно перестав лять друг с другом цифры 1, 2, 3 и 4?
Задача 2. За столом пять мест. Сколькими спосо бами можно рассадить пятерых гостей?
Задача 3. У Лены есть восемь разных красок. Она хочет написать ими слова «Новый Год». Сколькими способами она может это сделать, если каждая буква должна быть раскрашена одним цветом и все восемь букв должны быть разными по цвету?
Решение. Присвоим каждой краске номер от 1 до 8. Тогда каждый искомый способ задается перестанов кой восьми чисел 1, 2, . 8. Значит, таких перестановок 8!. Поэтому она может написать «Новый Год» 8! = 40 320 способами.
Перестановка с повторениями.
Задача 1. У мамы два яблока и три груши. Каж дый день в течение пяти дней она дает сыну по одно му фрукту. Сколькими способами это может быть сделано?
Решение. Р(2, 3) = 10.
Задача 2. Сколькими способами можно положить 28 различных открыток в четыре одинаковых кон верта так, чтобы в каждом конверте было по семь открыток?
Решение. Пометим конверты цифрами 1, 2, 3 и 4. Тогда число различных раскладок равно
Р(7, 7, 7,7)=.
Сотрем пометки. Теперь конверты можно произволь но переставлять друг с другом, не меняя результата раскладки (теперь они неотличимы друг от друга). Так как число различных перестановок четырех кон вертов равно
Р 4 = 4!, то число различных раскладок уменьшается в
Р 4 = 4! раз и поэтому оно равно
Ответ:
Задачи для домашней работы
Сколько различных слов можно получить, пе реставляя буквы слова «ингредиент»?
Сколькими способами можно посадить за круг лый стол пять мужчин и пять женщин так, чтобы никакие два лица одного пола не сидели рядом?
Автомобильные номера состоят из четырех цифр и трех букв. Найдите число таких номеров, если используются 32 буквы русского алфавита.
Ответы: 1 .226 800. 2 . 5! ∙ 5! = 14 400. 3. 10 3 ∙32 3 .
Сочетание с повторениями.
Задача 1. В кондитерском отделе продаются пи рожные четырех сортов: наполеоны, эклеры, песочные и слоеные. Сколькими способами можно купить семь пирожных?
Решение. Здесь рассматриваются сочетания с по вторениями из 4 (четыре вида пирожных) по 7 (столько пирожных покупают). Значит,
Ответ: 120 способов.
Задача 2. В почтовом отделении продают открыт ки 10 видов. Сколькими способами можно купить в нем 12 открыток?
Решение. Здесь рассматриваются сочетания с по вторениями из 10 по 12. Имеем
Сочетания без повторений.
Задача 1. Сколькими способами в игре «Спортло то» можно выбрать шесть номеров из 49?
Решение. Здесь рассматриваются сочетания без повторения (одно число может быть по правилам игры выбрано не более одного раза) из 49 по 6.
Задача 2. У Робина — Бобина Барабека 40 соседей. Он решил пригласить двоих из них на обед. Сколько у него способов это сделать?
Решение. Здесь рассматриваются сочетания без повторений.
Задача 3. Дама сдавала в багаж семь предметов, Все они оказались украденными, но два каких-либо (по ее выбору) ей согласились поискать. Сколько у нее есть возможностей выбрать два любимых предме та?
Задача 4. В прошлые века процветала генуэзская лотерея, сохранившаяся в некоторых странах и поныне. Участники этой лотереи покупали билеты, на которых стояло число от 1 до 90. Можно было ку пить и билеты, на которых было сразу 2, 3, 4 и 5 чисел. В день розыгрыша лотереи из мешка, содержащего жетоны с числами от 1 до 90, вынимали пять жетонов. Выигрывали те, у которых все номера на билетах были среди вынутых. Если участник лотереи покупал билет с одним из чисел, то он получал при выигрыше в 15 раз больше стоимости билета; если с двумя числами (амбо), то в 270 раз больше, если с тремя числами (терн) – в 5500 раз больше, если в четырьмя числами (катерн) – 75000 раз больше, а если с пятью числами (квин) – в 1000 000 раз больше, чем стоит билет. Каково отношение «счастливых» билетов при игре, когда участник купил билет с одним числом?
Решение. Общее число исходов находится из формулы сочетаний без повторений:
С 5 90 =
Если участник купил билет с одним номером, то для выигрыша необходимо, чтобы один из вынутых номеров совпал с номером на билете. Остальные 4 номера могут быть благоприятными. Но эти 4 номера выбираются из оставшихся 89 номеров. Поэтому число благоприятных комбинаций к общему числу комбинаций равно
Ответ:
Задачи для домашней работы
Сочетайте, каково отношение «счастливых» билетов при игре, когда участник купил билет с двумя числами.
Сколькими способами можно составить набор из восьми пирожных, если имеется четыре сорта пирожных?
В классе имеется шесть сильных математиков. Сколькими способами из них можно составить команду на районную олимпиаду по математике, если от класса можно послать команду из четырех человек?
Ответы: 1. . 2. 165. 3. 15.
Источник