Задачи по комбинаторики для 11 класса
Подборка задач по комбинаторике (с ответами) для 11 класса.
Просмотр содержимого документа
«Задачи по комбинаторики для 11 класса»
Задачи по комбинаторики
Задача 1: Сколькими способами можно составить список из 5 учеников?
Ответ: перестановки, 5! = 120.
Задача 2: В футбольной команде (11 человек) нужно выбрать капитана и его заместителя. Сколькими способами это можно сделать?
Ответ: размещения из 11 по 2, А 2 11= 110.
Задача 3: Расписание на день содержит 5 уроков. Определить количество возможных расписаний при выборе из 14 предметов, при условии, что ни один предмет не стоит дважды.
Ответ: размещения из 14 по 5, 1320.
Задача 4: Сколько различных трехцветных флагов можно сделать, комбинируя синий, красный и белый цвета?
Ответ: перестановки, 6 способов.
Задача 5: В классе 24 ученика. Сколькими способами можно сформировать команду из 4 человек для участия в математической олимпиаде?
Ответ: сочетания из 24 по 4,
Задача 6: Сколько трехзначных чисел можно составить из цифр 1, 2, 3, если каждая цифра входит в изображение числа только 1 раз?
Ответ: перестановки, 6 способов.
Задача 7: Сколькими различными способами можно избрать из 15 человек делегацию в составе 3 человек?
Ответ: сочетания, 455 способами.
Задача 8: Из ящика, где находится 15 шаров, нумерованных последовательно от 1 до 15, требуется вынуть 3 шара. Определить число возможных комбинаций при этом?
Ответ: размещения, 2830 способами.
Задача 9: Сколько четырехзначных чисел можно составить из цифр 0, 1, 2, 3, если каждая цифра входит в изображение числа только 1 раз?
Ответ: перестановки, 4! – 3! =18.
Задача 10: Сколькими способами можно разместить 6 пассажиров в четырехместной каюте?
Ответ: размещения из 6 элементов по 4, 360 способами.
Задача 11: Сколькими способами можно выбрать 2 детали из ящика, содержащего 10 деталей?
Ответ: сочетания из 10 элементов по 2, 45 способами.
Задача 12: Бригадир должен отправить на работу бригаду из 4 человек. Сколько бригад по 4 человека в каждой можно составить из 13 человек?
Ответ: сочетания из 13 по 4, 715 бригад.
Задача 13: При встрече 16 человек обменялись рукопожатиями. Сколько всего было сделано рукопожатий?
Ответ: сочетания из 16 по 2, 120 рукопожатий.
Задача 14: Группа учащихся в 30 человек пожелала обменяться своими фотокарточками. Сколько всего фотокарточек потребовалось для этого?
Ответ: сочетание из 30 по 2, 435 фотокарточек.
Задача 15: Сколько различных плоскостей можно провести через 10 точек, если никакие три из них не лежат на одной прямой и никакие четыре точки не лежат в одной плоскости?
Ответ: сочетание из 10 по 3; 120 точек
Задача 16: Сколько существует различных семизначных телефонных номеров?
Задача 17: Сколько существует различных семизначных телефонных номеров, если в каждом номере нет повторяющихся цифр?
Ответ: размещение из 10 по 7.
Задача 18: Сколько существует таких перестановок 7 учеников, при которых 3 определенных ученика находятся рядом друг с другом? Ответ: 720 = 3! · 5!
Задача 19: На книжной полке стоит собрание сочинений в 30 томах. Сколькими различными способами их можно переставить, чтобы: а) тома 1 и 2 стояли рядом; б) тома 3 и 4 рядом не стояли?
Задача 20: Сколько существует трёхзначных чисел, все цифры которых нечётные и различные?
Ответ: размещение из 5 по 3, 60.
Задача 21: У одного мальчика имеется 10 марок для обмена, а у другого – 8. Сколькими способами они могут обменять 2 марки одного на 2 марки другого?
Ответ: сочетания, С 2 10·С 2 8 = 1260.
Источник
Презентация по математике «Комбинаторика» Основные понятия и решение задач
Описание презентации по отдельным слайдам:
Отличительной чертой современного общества является его информативность, на основе которой можно достигнуть эффективного управления как отдельными объектами: предприятиями, фирмами, отраслями экономики, биологическими системами и организмами, так и различными процессами, протекающими в политической, общественной, социальной жизни. Чтобы достичь успеха в принятии наиболее правильного решения, не достаточно просто владеть полной информацией об объекте управления, необходимо хорошо ориентироваться в мире информации, использовать научные методы оценки случайностей и выявления взаимосвязей и активно действовать опираясь на скрытые закономерности. Искусство управления определяется принятием интегрированных решений, учитывающих разносторонние факторы, которые изменяются с какой-то долей случайности, неопределенности и закономерности различных событий. Фундаментом для научного подхода к поиску ответов на вопросы подобного рода является теория вероятностей.
Прежде, чем приступить к изучению теории вероятностей, Необходимо ознакомиться с основными математическими понятиями, которые необходимы для расчета вероятности. Основные формулы комбинаторики Комбинаторика изучает различные группы и соединения (комбинации).
Комбинации, типы комбинаций Соединением (комбинацией) называют объекты или предметы объединенные в группу. Комбинацией можно назвать группу студентов в аудитории, учащихся одного класса, совокупность произвольных букв, букв определенного слова, набор цифр, книги на полке и другое. Предметы из которых состоят соединения, называются элементами. Из элементов одного соединения можно составить другие соединения, которые формируются различными способами.
Перестановки Перестановками из n элементов называются такие соединения, каждое из которых содержит все n элементов, и которые отличаются друг от друга лишь порядком расположения элементов. Например, возьмем в качестве трех элементов цифры 1, 2, 3, тогда n=3. Построим из них все соединения, которые будут содержать все три элемента и отличаться друг от друга лишь порядком их расположения. Таких соединений будет шесть ( число перестановок из трех элементов). Число перестановок из n элементов обозначается (читается: n факториал) Факториалом называется произведение n натуральных чисел от 1 до n. 1 2 3 2 3 1 3 1 2 1 3 2 2 1 3 3 2 1
Перестановки 1. Сколькими способами можно составить список из пяти фамилий? Решением задачи является число перестановок из пяти элементов. 2. На книжной полке выставлены 8 книг различных авторов. Сколько способов имеется для расстановки этих книг в различном порядке? Решением задачи является число перестановок из 8 элементов. 3. Собрание сочинений А.С.Пушкина издано в шести томах. Сколько существует способов расставить эти тома?
На дверях четырех одинаковых кабинетов надо повесить таблички с фамилиями четырех заместителей директора. Сколькими способами это можно сделать? В 10 классе в среду пять уроков: алгебра, геометрия, физкультура, русский язык, английский язык. Сколько можно составить вариантов расписания на этот день? Адъютант должен развести пять копий приказа генерала пяти полкам. Сколькими способами он может выбрать маршрут доставки копий приказа? У Вовы на обед – первое, второе, третье блюда и пирожное. Он обязательно начнет с пирожного, а все остальное съест в произвольном порядке. Найдите число возможных вариантов обеда. Перестановки
Источник
Сколькими способами можно составить список различных фамилий 5 человек
Введение в теорию множеств и комбинаторику
Практическая работа № 12. Перестановки
Вопросы к работе
- Что такое « перестановки из n элементов»?
- Сколько перестановок существует для n элементов?
- Какие перестановки называются перестановками с повторениями?
- По какой формуле вычисляется число перестановок с повторениями?
Образцы решения заданий
Пример 1.Вычислить
,
,
. Итак,
Пример 2. Сколькими способами можно рассадить на скамейке пять человек?
Решение: Способов столько, сколько различных перестановок можно составить из 5 элементов, т. е. . Итак, пять человек на скамейке можно рассадить 120 способами.
Пример 3. Сколько всех семизначных чисел, у каждого из которых цифра 6 встречается 3 раза, а цифра 5 четыре раза?
чисел.
- Десять человек надо разбить на три группы
соответственно по 2, 3, 5 человек в группе. Сколькими способами это можно сделать? (Ответ: 2520).
- Сколькими способами можно упаковать девять различных книг в трех бандеролях
соответственно по 2, 3, 4 книги в каждой бандероли? (Ответ:
).
- Сколькими способами можно распределить семь молодых специалистов по трем цехам, которым, соответственно, нужны 1, 2, 4 специалиста? (Ответ:
).
- Сколькими способами можно составить список из 25 студентов? (Ответ:
).
- Сколькими способами можно разложить восемь различных писем по восьми различным конвертам, если в каждый конверт кладется одно письмо? (Ответ:
).
- Десять лиц, которые отдельно обедают и ужинают в одной и той же столовой, просят содержателя подождать с получением денег до тех пор, пока они не пересядут за столом всеми возможными способами, если каждый день за обедом они будут сидеть по-другому. Сколько лет пришлось бы ждать содержателю столовой, если бы он согласился на это предложение? (Ответ: около 4971 года).
- Сколькими способами 15 книг можно расположить на полке? (Ответ: 15!).
- Сколькими способами можно переставить буквы в слове «математика»? (Ответ:
).
- В доме отдыха давали на десерт либо яблоко, либо апельсин, либо мандарин. В течение 24 дней было выдано 9 яблок, 7 мандаринов и 8 апельсинов. Сколько различных вариантов выдачи может быть? (Ответ:
- Сколькими способами можно переставить буквы слова «перешеек» так, чтобы 4 буквы «е» шли подряд? (Ответ:
).
Задания для самоконтроля
- Найти все натуральные n , удовлетворяющие неравенству:
Источник
КОМБИНАТОРИКА
Комбинаторика – раздел математики, который изучает задачи выбора и расположения элементов из некоторого основного множества в соответствии с заданными правилами. Формулы и принципы комбинаторики используются в теории вероятностей для подсчета вероятности случайных событий и, соответственно, получения законов распределения случайных величин. Это, в свою очередь, позволяет исследовать закономерности массовых случайных явлений, что является весьма важным для правильного понимания статистических закономерностей, проявляющихся в природе и технике.
Правила сложения и умножения в комбинаторике
Правило суммы. Если два действия А и В взаимно исключают друг друга, причем действие А можно выполнить m способами, а В – n способами, то выполнить одно любое из этих действий (либо А, либо В) можно n + m способами.
Пример 1.
В классе учится 16 мальчиков и 10 девочек. Сколькими способами можно назначить одного дежурного?
Дежурным можно назначить либо мальчика, либо девочку, т.е. дежурным может быть любой из 16 мальчиков, либо любая из 10 девочек.
По правилу суммы получаем, что одного дежурного можно назначить 16+10=26 способами.
Правило произведения. Пусть требуется выполнить последовательно k действий. Если первое действие можно выполнить n1 способами, второе действие n2 способами, третье – n3 способами и так до k-го действия, которое можно выполнить nk способами, то все k действий вместе могут быть выполнены:
Пример 2.
В классе учится 16 мальчиков и 10 девочек. Сколькими способами можно назначить двух дежурных?
Первым дежурным можно назначить либо мальчика, либо девочку. Т.к. в классе учится 16 мальчиков и 10 девочек, то назначить первого дежурного можно 16+10=26 способами.
После того, как мы выбрали первого дежурного, второго мы можем выбрать из оставшихся 25 человек, т.е. 25-ю способами.
По теореме умножения двое дежурных могут быть выбраны 26*25=650 способами.
Сочетания без повторений. Сочетания с повторениями
Классической задачей комбинаторики является задача о числе сочетаний без повторений, содержание которой можно выразить вопросом: сколькими способами можно выбрать m из n различных предметов ?
Пример 3.
Необходимо выбрать в подарок 4 из 10 имеющихся различных книг. Сколькими способами можно это сделать?
Нам из 10 книг нужно выбрать 4, причем порядок выбора не имеет значения. Таким образом, нужно найти число сочетаний из 10 элементов по 4:
.
Рассмотрим задачу о числе сочетаний с повторениями: имеется по r одинаковых предметов каждого из n различных типов; сколькими способами можно выбрать m () из этих (n*r) предметов?
.
Пример 4.
В кондитерском магазине продавались 4 сорта пирожных: наполеоны, эклеры, песочные и слоеные. Сколькими способами можно купить 7 пирожных?
Т.к. среди 7 пирожных могут быть пирожные одного сорта, то число способов, которыми можно купить 7 пирожных, определяется числом сочетаний с повторениями из 7 по 4.
.
Размещения без повторений. Размещения с повторениями
Классической задачей комбинаторики является задача о числе размещений без повторений, содержание которой можно выразить вопросом: сколькими способами можно выбрать и разместить по m различным местам m из n различных предметов?
Пример 5.
В некоторой газете 12 страниц. Необходимо на страницах этой газеты поместить четыре фотографии. Сколькими способами можно это сделать, если ни одна страница газеты не должна содержать более одной фотографии?
В данной задаче мы не просто выбираем фотографии, а размещаем их на определенных страницах газеты, причем каждая страница газеты должна содержать не более одной фотографии. Таким образом, задача сводится к классической задаче об определении числа размещений без повторений из 12 элементов по 4 элемента:
Таким образом, 4 фотографии на 12 страницах можно расположить 11880 способами.
Также классической задачей комбинаторики является задача о числе размещений с повторениями, содержание которой можно выразить вопросом: сколькими способами можно выбрать и разместить по m различным местам m из n предметов, среди которых есть одинаковые?
Пример 6.
У мальчика остались от набора для настольной игры штампы с цифрами 1, 3 и 7. Он решил с помощью этих штампов нанести на все книги пятизначные номера– составить каталог. Сколько различных пятизначных номеров может составить мальчик?
Можно считать, что опыт состоит в 5-кратном выборе с возращением одной из 3 цифр (1, 3, 7). Таким образом, число пятизначных номеров определяется числом размещений с повторениями из 3 элементов по 5:
.
Перестановки без повторений. Перестановки с повторениями
Классической задачей комбинаторики является задача о числе перестановок без повторения, содержание которой можно выразить вопросом: сколькими способами можно разместить n различных предметов на n различных местах?
Пример 7.
Сколько можно составить четырехбуквенных «слов» из букв слова«брак»?
Генеральной совокупностью являются 4 буквы слова «брак» (б, р, а, к). Число «слов» определяется перестановками этих 4 букв, т. е.
Для случая, когда среди выбираемых n элементов есть одинаковые (выборка с возвращением), задачу о числе перестановок с повторениями можно выразить вопросом: сколькими способами можно переставить n предметов, расположенных на n различных местах, если среди n предметов имеются k различных типов (k
Пример 8.
Сколько разных буквосочетаний можно сделать из букв слова «Миссисипи»?
Здесь 1 буква «м», 4 буквы «и», 3 буквы «c» и 1 буква «п», всего 9 букв. Следовательно, число перестановок с повторениями равно
ОПОРНЫЙ КОНСПЕКТ ПО РАЗДЕЛУ «КОМБИНАТОРИКА»
Источник