КОМБИНАТОРИКА
Комбинаторика – раздел математики, который изучает задачи выбора и расположения элементов из некоторого основного множества в соответствии с заданными правилами. Формулы и принципы комбинаторики используются в теории вероятностей для подсчета вероятности случайных событий и, соответственно, получения законов распределения случайных величин. Это, в свою очередь, позволяет исследовать закономерности массовых случайных явлений, что является весьма важным для правильного понимания статистических закономерностей, проявляющихся в природе и технике.
Правила сложения и умножения в комбинаторике
Правило суммы. Если два действия А и В взаимно исключают друг друга, причем действие А можно выполнить m способами, а В – n способами, то выполнить одно любое из этих действий (либо А, либо В) можно n + m способами.
Пример 1.
В классе учится 16 мальчиков и 10 девочек. Сколькими способами можно назначить одного дежурного?
Дежурным можно назначить либо мальчика, либо девочку, т.е. дежурным может быть любой из 16 мальчиков, либо любая из 10 девочек.
По правилу суммы получаем, что одного дежурного можно назначить 16+10=26 способами.
Правило произведения. Пусть требуется выполнить последовательно k действий. Если первое действие можно выполнить n1 способами, второе действие n2 способами, третье – n3 способами и так до k-го действия, которое можно выполнить nk способами, то все k действий вместе могут быть выполнены:
Пример 2.
В классе учится 16 мальчиков и 10 девочек. Сколькими способами можно назначить двух дежурных?
Первым дежурным можно назначить либо мальчика, либо девочку. Т.к. в классе учится 16 мальчиков и 10 девочек, то назначить первого дежурного можно 16+10=26 способами.
После того, как мы выбрали первого дежурного, второго мы можем выбрать из оставшихся 25 человек, т.е. 25-ю способами.
По теореме умножения двое дежурных могут быть выбраны 26*25=650 способами.
Сочетания без повторений. Сочетания с повторениями
Классической задачей комбинаторики является задача о числе сочетаний без повторений, содержание которой можно выразить вопросом: сколькими способами можно выбрать m из n различных предметов ?
Пример 3.
Необходимо выбрать в подарок 4 из 10 имеющихся различных книг. Сколькими способами можно это сделать?
Нам из 10 книг нужно выбрать 4, причем порядок выбора не имеет значения. Таким образом, нужно найти число сочетаний из 10 элементов по 4:
.
Рассмотрим задачу о числе сочетаний с повторениями: имеется по r одинаковых предметов каждого из n различных типов; сколькими способами можно выбрать m () из этих (n*r) предметов?
.
Пример 4.
В кондитерском магазине продавались 4 сорта пирожных: наполеоны, эклеры, песочные и слоеные. Сколькими способами можно купить 7 пирожных?
Т.к. среди 7 пирожных могут быть пирожные одного сорта, то число способов, которыми можно купить 7 пирожных, определяется числом сочетаний с повторениями из 7 по 4.
.
Размещения без повторений. Размещения с повторениями
Классической задачей комбинаторики является задача о числе размещений без повторений, содержание которой можно выразить вопросом: сколькими способами можно выбрать и разместить по m различным местам m из n различных предметов?
Пример 5.
В некоторой газете 12 страниц. Необходимо на страницах этой газеты поместить четыре фотографии. Сколькими способами можно это сделать, если ни одна страница газеты не должна содержать более одной фотографии?
В данной задаче мы не просто выбираем фотографии, а размещаем их на определенных страницах газеты, причем каждая страница газеты должна содержать не более одной фотографии. Таким образом, задача сводится к классической задаче об определении числа размещений без повторений из 12 элементов по 4 элемента:
Таким образом, 4 фотографии на 12 страницах можно расположить 11880 способами.
Также классической задачей комбинаторики является задача о числе размещений с повторениями, содержание которой можно выразить вопросом: сколькими способами можно выбрать и разместить по m различным местам m из n предметов, среди которых есть одинаковые?
Пример 6.
У мальчика остались от набора для настольной игры штампы с цифрами 1, 3 и 7. Он решил с помощью этих штампов нанести на все книги пятизначные номера– составить каталог. Сколько различных пятизначных номеров может составить мальчик?
Можно считать, что опыт состоит в 5-кратном выборе с возращением одной из 3 цифр (1, 3, 7). Таким образом, число пятизначных номеров определяется числом размещений с повторениями из 3 элементов по 5:
.
Перестановки без повторений. Перестановки с повторениями
Классической задачей комбинаторики является задача о числе перестановок без повторения, содержание которой можно выразить вопросом: сколькими способами можно разместить n различных предметов на n различных местах?
Пример 7.
Сколько можно составить четырехбуквенных «слов» из букв слова«брак»?
Генеральной совокупностью являются 4 буквы слова «брак» (б, р, а, к). Число «слов» определяется перестановками этих 4 букв, т. е.
Для случая, когда среди выбираемых n элементов есть одинаковые (выборка с возвращением), задачу о числе перестановок с повторениями можно выразить вопросом: сколькими способами можно переставить n предметов, расположенных на n различных местах, если среди n предметов имеются k различных типов (k
Пример 8.
Сколько разных буквосочетаний можно сделать из букв слова «Миссисипи»?
Здесь 1 буква «м», 4 буквы «и», 3 буквы «c» и 1 буква «п», всего 9 букв. Следовательно, число перестановок с повторениями равно
ОПОРНЫЙ КОНСПЕКТ ПО РАЗДЕЛУ «КОМБИНАТОРИКА»
Источник
Комбинаторные задачи
Способы решения и практика.
Задача 1. В классе 30 учащихся. Сколькими способами могут быть выбраны староста и физорг, если каждый учащийся может быть избран только на одну из этих должностей?
Так как по условию задачи каждый учащийся может быть избран старостой, то, очевидно, существует 30 способов выбора старосты. Физоргом может стать каждый из оставшихся 29 человек. Любой из 30 способов выбора старосты может осуществляться вместе с любым из 29 способов выбора физорга. Поэтому существует 30 · 29 = 870 способов выбора старосты и физорга.
Ответ: 870 способов.
Задача 2. Для дежурства в классе в течение недели (пятидневная учебная неделя) выделены 5 учащихся. Сколькими способами можно установить очерёдность дежурств, если каждый учащийся дежурит один раз?
В понедельник может дежурить любой из выделенных пяти человек. Во вторник может дежурить каждый из ещё не дежуривших учащихся. К среде остаются три человека, которые ещё не дежурили, и поэтому на среду дежурного можно будет назначать тремя способами. Ясно, что число способов, которыми можно установить очерёдность дежурств, равно
5 · 4 · 3 · 2 · 1 = 120.
Ответ: 120 способов.
Задача 3. Для проверки олимпиадных работ создаётся комиссия из двух преподавателей. Сколько различных комиссий можно составить из шести преподавателей?
Обозначим для удобства преподавателей буквами А, В, С, Д, Е, К. Теперь выпишем все возможные варианты состава комиссии, а именно:
АВ, АС, АД, АЕ, АК, ВС, ВД, ВЕ,ВК, СД, СЕ, ДЕ, ДК, ЕК.
Таким образом, видно, что число различных комиссий равно 15.
Эту задачу можно решить с помощью таблицы, если учесть, что АВ = ВА, АС = СА и тд:
Источник
Примеры решений задач по комбинаторике
Комбинаторика — это наука, с который каждый встречается в повседневной жизни: сколько способов выбрать 3 дежурных для уборки класса или сколько способов составить слово из данных букв. В целом, комбинаторика позволяет вычислить, сколько различных комбинаций, согласно некоторым условиям, можно составить из заданных объектов (одинаковых или разных).
Как наука комбинаторика возникла еще в 16 веке, а теперь ее изучает каждый студент (и зачастую даже школьник). Начинают изучение с понятий перестановок, размещений, сочетаний (с повторениями или без), на эти темы вы найдете задачи и ниже. Наиболее известные правила комбинаторики — правила суммы и произведения, которые чаще всего применяются в типовых комбинаторных задачах.
Ниже вы найдете несколько примеров задач с решениями на комбинаторные понятия и правила, которые позволят разобраться с типовыми заданиями. Если есть трудности с задачами — заказывайте контрольную по комбинаторике.
Калькуляторы онлайн и примеры
Задачи по комбинаторике с решениями онлайн
Задача 1. У мамы 2 яблока и 3 груши. Каждый день в течение 5 дней подряд она выдает по одному фрукту. Сколькими способами это может быть сделано?
Задача 2. Предприятие может предоставить работу по одной специальности 4 женщинами, по другой — 6 мужчинам, по третьей — 3 работникам независимо от пола. Сколькими способами можно заполнить вакантные места, если имеются 14 претендентов: 6 женщин и 8 мужчин?
Задача 3. В пассажирском поезде 9 вагонов. Сколькими способами можно рассадить в поезде 4 человека, при условии, что все они должны ехать в различных вагонах?
Задача 4. В группе 9 человек. Сколько можно образовать разных подгрупп при условии, что в подгруппу входит не менее 2 человек?
Задача 5. Группу из 20 студентов нужно разделить на 3 бригады, причем в первую бригаду должны входить 3 человека, во вторую — 5 и в третью — 12. Сколькими способами это можно сделать.
Задача 6. Для участия в команде тренер отбирает 5 мальчиков из 10. Сколькими способами он может сформировать команду, если 2 определенных мальчика должны войти в команду?
Задача 7. В шахматном турнире принимали участие 15 шахматистов, причем каждый из них сыграл только одну партию с каждым из остальных. Сколько всего партий было сыграно в этом турнире?
Задача 8. Сколько различных дробей можно составить из чисел 3, 5, 7, 11, 13, 17 так, чтобы в каждую дробь входили 2 различных числа? Сколько среди них будет правильных дробей?
Задача 9. Сколько слов можно получить, переставляя буквы в слове Гора и Институт?
Задача 10. Каких чисел от 1 до 1 000 000 больше: тех, в записи которых встречается единица, или тех, в которых она не встречается?
Готовые примеры
Нужны решенные задачи по комбинаторике? Найди в решебнике:
Источник
Сколькими способами можно решить экзамен
пЮЕОШ ЮБУФП Ч ТЕБМШОПК ЦЙЪОЙ чБН РТЙИПДЙФУС ТЕЫБФШ РТПВМЕНЩ УМЕДХАЭЕЗП ФЙРБ: ЛБЛ ЙЪ НОПЦЕУФЧБ, УПУФПСЭЕЗП ЙЪ n ЬМЕНЕОФПЧ, ЧЩВТБФШ ХРПТСДПЮЕООПЕ РПДНОПЦЕУФЧП ЙЪ m ЬМЕНЕОФПЧ. оБРТЙНЕТ, ЛБЛ ТБУУБДЙФШ ЪБ РТБЪДОЙЮОЩН УФПМПН 12 ЗПУФЕК, ЕУМЙ ЧУЕЗП 15 НЕУФ ?
пртедемеойе 1.3.1
хРПТСДПЮЕООПЕ m — ЬМЕНЕОФОПЕ РПДНОПЦЕУФЧП НОПЦЕУФЧБ ЙЪ n ЬМЕНЕОФПЧ ОБЪЩЧБЕФУС тбънеэеойен ЙЪ n ЬМЕНЕОФПЧ РП m.
фептенб 1.3.1
юЙУМП ТБЪНЕЭЕОЙК НОПЦЕУФЧБ ЙЪ n ЬМЕНЕОФПЧ РП m ТБЧОП
1-К ЬМЕНЕОФ НПЦОП ЧЩВТБФШ n УРПУПВБНЙ,
2-К — (n — 1) УРПУПВПН,
m-К — (n — (m — 1)) УРПУПВБНЙ.
уМЕДПЧБФЕМШОП, ПВЭЕЕ ЮЙУМП УРПУПВПЧ ЧЩВТБФШ ХРПТСДПЮЕООПЕ РПДНОПЦЕУФЧП ВХДЕФ ТБЧОП n (n — 1) . (n — (m — 1)).
хНОПЦЙН Й ТБЪДЕМЙН ДБООПЕ ЧЩТБЦЕОЙЕ ОБ (n — m)!:
пвпъобюеойе:
уЙНЧПМ ФБЛ Й ЮЙФБЕФУС: «юЙУМП ТБЪНЕЭЕОЙК ЙЪ n РП m».
умедуфчйе 1.3.1
m ТБЪМЙЮОЩИ РТЕДНЕФПЧ РП n НЕУФБН НПЦОП ТБУУФБЧЙФШ УРПУПВБНЙ.
ч ЮБУФОПУФЙ, РТЙЗМБЫЕООЩИ чБНЙ ЗПУФЕК НПЦОП ТБУУБДЙФШ УРПУПВБНЙ.
ъбдбюб 1.3.1 уФХДЕОФХ ОЕПВИПДЙНП УДБФШ 4 ЬЛЪБНЕОБ Ч ФЕЮЕОЙЕ 10 ДОЕК. уЛПМШЛЙНЙ УРПУПВБНЙ НПЦОП УПУФБЧЙФШ ЕНХ ТБУРЙУБОЙЕ ЬЛЪБНЕОПЧ? (рТЕДРПМБЗБЕФУС, ЮФП Ч ДЕОШ УДБЕФУС ФПМШЛП ПДЙО ЬЛЪБНЕО.)
тЕЫЕОЙЕ ДБООПК ЪБДБЮЙ УЧПДЙФУС Л ПРТЕДЕМЕОЙА ЮЙУМБ УРПУПВПЧ ТБУУФБОПЧЛЙ 4-И ТБЪМЙЮОЩИ РТЕДНЕФПЧ РП 10 НЕУФБН. уМЕДПЧБФЕМШОП, ЮЙУМП УРПУПВПЧ УПУФБЧЙФШ ДБООПЕ ТБУРЙУБОЙЕ ТБЧОП:
ъбдбюб 1.3.2 уЛПМШЛП УМПЧ НПЦОП ПВТБЪПЧБФШ ЙЪ ВХЛЧ УМПЧБ жтбзнеоф, ЕУМЙ УМПЧБ ДПМЦОЩ УПУФПСФШ: Б) ЙЪ 8 ВХЛЧ; В) ЙЪ 7 ВХЛЧ; Ч) ЙЪ 3 ВХЛЧ? (нБФЕНБФЙЛБ РПД УМПЧПН РПОЙНБЕФ РТПЙЪЧПМШОЩК ОБВПТ ВХЛЧ).
Б) n = 8, m = 8. юЙУМП УРПУПВПЧ ТБЧОП = 8!.
В) n = 8, m = 7. юЙУМП УРПУПВПЧ ТБЧОП = 8!.
Ч) n = 8, m = 3. юЙУМП УРПУПВПЧ ТБЧОП = 336.
ъбдбюб 1.3.3 дЕУСФШ ЛТЕУЕМ РПУФБЧМЕОЩ Ч ТСД. уЛПМШЛЙНЙ УРПУПВБНЙ 2 ЮЕМПЧЕЛБ НПЗХФ: Б) УЕУФШ ОБ ОЙИ; В) УЕУФШ ТСДПН; Ч) УЕУФШ ФБЛ, ЮФПВЩ НЕЦДХ ОЙНЙ ВЩМП, РП ЛТБКОЕК НЕТЕ, ПДОП РХУФПЕ ЛТЕУМП?
Б) n = 10, m = 2. юЙУМП УРПУПВПЧ = 90.
В) пВПЪОБЮЙН ЬФЙИ ДЧХИ ЮЕМПЧЕЛ ХУМПЧОП и Й х.
ъБНЕФЙН, ЮФП ЮЙУМП УРПУПВПЧ ТБУУБДЙФШ ЙИ ФБЛ, ЮФПВЩ ПОЙ УЙДЕМЙ ТСДПН Й и ВЩМ УРТБЧБ ПФ х, ТБЧОП 9. бОБМПЗЙЮОП, ЮЙУМП УРПУПВПЧ ТБУУБДЙФШ ЙИ ФБЛ, ЮФПВЩ, и ВЩМ УМЕЧБ ПФ х, Й ПОЙ УЙДЕМЙ ТСДПН, ФПЦЕ — 9. (ч ЛБЦДПН ЙЪ ЬФЙИ УМХЮБЕЧ НЩ ЧЩВЙТБЕН НЕУФП ФПМШЛП ДМС и.) уМЕДПЧБФЕМШОП, ПВЭЕЕ ЮЙУМП УРПУПВПЧ: 9 + 9 = 18.
Ч) дМС РПМХЮЕОЙС ПФЧЕФБ ОБ РПУФБЧМЕООЩК ЧПРТПУ, ДПУФБФПЮОП ЧПУРПМШЪПЧБФШУС ТЕЪХМШФБФБНЙ, РПМХЮЕООЩНЙ Ч РХОЛФБИ Б) Й В). фП ЕУФШ, ЙЪ ПВЭЕЗП ЮЙУМБ УРПУПВПЧ ТБУУБДЙФШ 2-И ЮЕМПЧЕЛ РП 10 ЛТЕУМБН ЧЩЮЕУФШ ЮЙУМП УРПУПВПЧ ТБУУБДЙФШ ЙИ ФБЛ, ЮФПВЩ ПОЙ УЙДЕМЙ ТСДПН: 90 — 18 = 72.
ъБДБЮЙ ДМС УБНПУФПСФЕМШОПЗП ТЕЫЕОЙС.
ъбдбюб 1.3.1(у) чПУЕНШ НБМШЮЙЛПЧ ЧПДСФ ИПТПЧПД. ъБФЕН Л ОЙН РТЙУПЕДЙОСАФУС ЕЭЕ РСФШ ДЕЧПЮЕЛ. уЛПМШЛЙНЙ УРПУПВБНЙ ДЕЧПЮЛЙ НПЗХФ ЧУФБФШ Ч ЛПМШГП, ЕУМЙ ОЙЛБЛЙЕ ДЧЕ ДЕЧПЮЛЙ ОЕ ДПМЦОЩ УФПСФШ ТСДПН?
ъбдбюб 1.3.2(у) уЛПМШЛП ЮЕФЩТЕИЪОБЮОЩИ ЮЙУЕМ НПЦОП УПУФБЧЙФШ, ЙУРПМШЪХС ГЙЖТЩ 1, 2, 3, 4, 5; ЕУМЙ ЮЙУМБ ДПМЦОЩ ВЩФШ ОЕЮЕФОЩЕ Й РПЧФПТЕОЙК ГЙЖТ ВЩФШ ОЕ ДПМЦОП?
ъбдбюб 1.3.3(у) дПЛБЪБФШ, ЮФП ЮЙУМП ФТЕИВХЛЧЕООЩИ УМПЧ, ЛПФПТЩЕ НПЦОП ПВТБЪПЧБФШ ЙЪ ВХЛЧ, УПУФБЧМСАЭЙИ УМПЧП зйрпфеохъб, ТБЧОП ЮЙУМХ ЧУЕИ ЧПЪНПЦОЩИ РЕТЕУФБОПЧПЛ ВХЛЧ, УПУФБЧМСАЭЙИ УМПЧП ртйънб.
© гЕОФТ ДЙУФБОГЙПООПЗП ПВТБЪПЧБОЙС пзх, 2000-2002
Источник