Сколькими способами можно разместить шесть различных

Математика 5 класс

Задача 922



На книжную полку ставят 6 разных книг. Сколькими способами эти книги можно разместить на полке?

Первую книгу мы можем поставить на любое из 6 мест, это уже 6 способов.
Когда мы захотим поставить вторую книгу, одно из мест будет уже занято, поэтому вторую книгу мы сможем поставить только 5 способами.

Получается что первые две книги мы можем расставить 6*5=30 способами.

Когда мы захотим поставить третью книгу, два места будут уже заняты, свободных мест останеться только 4, поэтому третью книгу мы можем разместить только 4 способами.

Тогда первые три книги мы можем расположить 6*5*4=120 спомобами.

Когда мы захотим поставить четвертую книгу, три места будут уже заняты, свободных мест останеться уже 3, поэтому четверную книгу мы можем разместить только 3 способами.

Тогда первые четыре книги мы сможем расположить 6*5*4*3=360 способами.

Когда мы захотим поставить пятую книгу, четыре места будут уже заняты, свободных мест останеться уже 2, поэтому пятую книгу мы можем разместить только 2 способами.

Тогда первые пять книг мы можем зазместить 6*5*4*3*2=720 способами.

Когда мы захотим разместить шестую книгу, то сводобным останеться только одно место, и последнюю книгу мы сможем разместить только одним единственным образом.

Поэтому все шесть книг мы можем разместить 6*5*4*3*2*1=720 способами.

Источник

КОМБИНАТОРИКА

Комбинаторика – раздел математики, который изучает задачи выбора и расположения элементов из некоторого основного множества в соответствии с заданными правилами. Формулы и принципы комбинаторики используются в теории вероятностей для подсчета вероятности случайных событий и, соответственно, получения законов распределения случайных величин. Это, в свою очередь, позволяет исследовать закономерности массовых случайных явлений, что является весьма важным для правильного понимания статистических закономерностей, проявляющихся в природе и технике.

Правила сложения и умножения в комбинаторике

Правило суммы. Если два действия А и В взаимно исключают друг друга, причем действие А можно выполнить m способами, а В – n способами, то выполнить одно любое из этих действий (либо А, либо В) можно n + m способами.

Пример 1.

В классе учится 16 мальчиков и 10 девочек. Сколькими способами можно назначить одного дежурного?

Дежурным можно назначить либо мальчика, либо девочку, т.е. дежурным может быть любой из 16 мальчиков, либо любая из 10 девочек.

По правилу суммы получаем, что одного дежурного можно назначить 16+10=26 способами.

Правило произведения. Пусть требуется выполнить последовательно k действий. Если первое действие можно выполнить n1 способами, второе действие n2 способами, третье – n3 способами и так до k-го действия, которое можно выполнить nk способами, то все k действий вместе могут быть выполнены:

Пример 2.

В классе учится 16 мальчиков и 10 девочек. Сколькими способами можно назначить двух дежурных?

Первым дежурным можно назначить либо мальчика, либо девочку. Т.к. в классе учится 16 мальчиков и 10 девочек, то назначить первого дежурного можно 16+10=26 способами.

После того, как мы выбрали первого дежурного, второго мы можем выбрать из оставшихся 25 человек, т.е. 25-ю способами.

По теореме умножения двое дежурных могут быть выбраны 26*25=650 способами.

Сочетания без повторений. Сочетания с повторениями

Классической задачей комбинаторики является задача о числе сочетаний без повторений, содержание которой можно выразить вопросом: сколькими способами можно выбрать m из n различных предметов ?

Пример 3.

Необходимо выбрать в подарок 4 из 10 имеющихся различных книг. Сколькими способами можно это сделать?

Нам из 10 книг нужно выбрать 4, причем порядок выбора не имеет значения. Таким образом, нужно найти число сочетаний из 10 элементов по 4:

.

Рассмотрим задачу о числе сочетаний с повторениями: имеется по r одинаковых предметов каждого из n различных типов; сколькими способами можно выбрать m () из этих (n*r) предметов?

.

Пример 4.

В кондитерском магазине продавались 4 сорта пирожных: наполеоны, эклеры, песочные и слоеные. Сколькими способами можно купить 7 пирожных?

Т.к. среди 7 пирожных могут быть пирожные одного сорта, то число способов, которыми можно купить 7 пирожных, определяется числом сочетаний с повторениями из 7 по 4.

.

Размещения без повторений. Размещения с повторениями

Классической задачей комбинаторики является задача о числе размещений без повторений, содержание которой можно выразить вопросом: сколькими способами можно выбрать и разместить по m различным местам m из n различных предметов?

Пример 5.

В некоторой газете 12 страниц. Необходимо на страницах этой газеты поместить четыре фотографии. Сколькими способами можно это сделать, если ни одна страница газеты не должна содержать более одной фотографии?

В данной задаче мы не просто выбираем фотографии, а размещаем их на определенных страницах газеты, причем каждая страница газеты должна содержать не более одной фотографии. Таким образом, задача сводится к классической задаче об определении числа размещений без повторений из 12 элементов по 4 элемента:

Таким образом, 4 фотографии на 12 страницах можно расположить 11880 способами.

Также классической задачей комбинаторики является задача о числе размещений с повторениями, содержание которой можно выразить вопросом: сколькими способами можно выбрать и разместить по m различным местам m из n предметов, среди которых есть одинаковые?

Пример 6.

У мальчика остались от набора для настольной игры штампы с цифрами 1, 3 и 7. Он решил с помощью этих штампов нанести на все книги пятизначные номера– составить каталог. Сколько различных пятизначных номеров может составить мальчик?

Можно считать, что опыт состоит в 5-кратном выборе с возращением одной из 3 цифр (1, 3, 7). Таким образом, число пятизначных номеров определяется числом размещений с повторениями из 3 элементов по 5:

.

Перестановки без повторений. Перестановки с повторениями

Классической задачей комбинаторики является задача о числе перестановок без повторения, содержание которой можно выразить вопросом: сколькими способами можно разместить n различных предметов на n различных местах?

Пример 7.

Сколько можно составить четырехбуквенных «слов» из букв слова«брак»?

Генеральной совокупностью являются 4 буквы слова «брак» (б, р, а, к). Число «слов» определяется перестановками этих 4 букв, т. е.

Для случая, когда среди выбираемых n элементов есть одинаковые (выборка с возвращением), задачу о числе перестановок с повторениями можно выразить вопросом: сколькими способами можно переставить n предметов, расположенных на n различных местах, если среди n предметов имеются k различных типов (k

Пример 8.

Сколько разных буквосочетаний можно сделать из букв слова «Миссисипи»?

Здесь 1 буква «м», 4 буквы «и», 3 буквы «c» и 1 буква «п», всего 9 букв. Следовательно, число перестановок с повторениями равно

ОПОРНЫЙ КОНСПЕКТ ПО РАЗДЕЛУ «КОМБИНАТОРИКА»

Источник

Элементы комбинаторики: перестановки, сочетания и размещения.

Элементы комбинаторики: перестановки, сочетания и размещения.

Определение: Комбинаторика – это раздел математики, в котором изучаются вопросы о том, сколько различных комбинаций, подчиненных тем или иным условиям, можно составить из заданных объектов .

Слово «комбинаторика» происходит от латинского слова «combinare», что в переводе на русский означает – «сочетать», «соединять». Комбинаторные задачи возникли и в связи с такими играми, как шашки, шахматы, домино, карты, кости и т.д.

Термин «комбинаторика» был введён знаменитым Готфридом Вильгельмом Лейбницем, — всемирно известным немецким учёным.

Комбинаторные задачи делятся на: задачи на перестановки , задачи на размещение, задачи на сочетание

Определение: Факториал – это произведение всех натуральных чисел от 1 до n.

Обозначение: n ! = 1 · 2 · 3 · . · n.Читается: «эн факториал».

Пример: 4! = 1 · 2 · 3 · 4 = 24.

Задачи на перестановки

Сколькими способами можно расставить 3 различные книги на книжной полке?

Это задача на перестановки.

Решение: Выбираем одну из 3-х книг и ставим на первое место. Это можно сделать 3-мя способами.

Вторую книгу мы можем выбрать из 2-х оставшихся двумя способами, получаем 3·2 способов.

Третью книгу мы можем выбрать 1 способом.

Получится 3·2·1=6 способов.

Определение: Перестановками из n элементов называются комбинации из n элементов, отличающиеся друг от друга только порядком расположения в них элементов.

Типичная смысловая нагрузка: «Сколькими способами можно переставить n объектов?»

Пример 1. Сколькими способами можно расставить 8 участников финального забега на восьми беговых дорожках?

Решение: P 8 = 8!=1 ∙ 2 ∙ 3 ∙ 4 ∙ 5 ∙ 6 ∙ 7 ∙ 8 = 40320.

Пример 2. Сколькими способами можно составить расписание на один день, если в этот день предусмотрено 6 уроков по 6 разным предметам?

Решение: P 6 = 6!=1 ∙2 ∙ 3 ∙ 4 ∙ 5 ∙ 6 = 720.

Пример 3. Сколькими различными способами можно разместить на скамейке 10 человек?

Решение: P 8 = 8!=1 ∙ 2 ∙ 3 ∙ 4 ∙ 5 ∙ 6 ∙ 7 ∙ 8 ∙ 9 ∙ 10 = 3628800.

Пример 4. Сколько слов можно получить, переставляя буквы в слове Гора?

Решение: P 4 = 4!=1 ∙2 ∙ 3 ∙ 4 = 24.

Пример 5. Сколько различных шестизначных чисел, кратных 5, можно составить из цифр 1, 2, 3, 4, 5, 6 при условии, что цифры в числе не повторяются?

Решение: Чтобы число было кратным 5, цифра 5 должна стоять на последнем месте. Остальные цифры могут стоять на оставшихся пяти местах в любом порядке. Следовательно, искомое количество шестизначных чисел, кратных 5, равно числу перестановок из 5 элементов, т.е.

P 5 = 5!=1 ∙ 2 ∙ 3 ∙ 4 ∙ 5 = 120.

Задачи на размещения

Имеется 5 книг и одна полка, такая что на ней вмещается лишь 3 книги.

Сколькими способами можно расставить на полке 3 книги?

Это задача на размещение.

Решение: Выбираем одну из 5-ти книг и ставим на первое место на полке. Это можно сделать 5-ю способами.

Вторую книгу мы можем выбрать 4-мя способами и поставить рядом с одной из 5-ти возможных первых.

Таких пар может быть 5·4.

Третью книгу мы можем выбрать 3-мя способами.

Получится 5·4·3 разнообразных троек. Значит всего способов разместить 3 книги из 5-ти 5·4·3 = 60.

Определение: Размещением из n элементов по k ( k ≤ n ) называется любое множество, состоящее из k элементов, взятых в определённом порядке из данных n элементов.

Типичная смысловая нагрузка: «Сколькими способами можно выбрать k объектов и в каждой выборке переставить их местами?»

Пример 1. Учащиеся второго класса изучают 9 предметов. Сколькими способами можно составить расписание на один день, чтобы в нём было 4 различных предмета?

Пример 2. Сколько трехзначных чисел можно составить из цифр 2, 4, 6, 7, 9?

Пример 3. В соревнованиях высшей лиги по футболу участвуют 18 команд. Борьба идет за золотые, серебряные и бронзовые медали. Сколькими способами могут быть распределены медали между командами?

Пример 4. Сколькими способами можно опустить 5 писем в 11 почтовых ящиков, если в каждый ящик опускают не более одного письма?

Пример 5. Боря, Дима и Володя сели играть в карты. Сколькими способами им можно сдать по одной карте? (колода содержит 36 карт)

– способами можно раздать 3 карты игрокам.

Пример 6. В пассажирском поезде 9 вагонов. Сколькими способами можно рассадить в поезде 4 человека, при условии, что все они должны ехать в различных вагонах?

– способами можно рассадить в поезде 4 человека.

Задачи на сочетания

Сколькими способами можно расставить 3 тома на книжной полке, если выбирать их из имеющихся в наличии внешне неразличимых 5 книг?

Это задача на сочетания.

Решение: Книги внешне неразличимы. Но они различаются, и существенно! Эти книги разные по содержанию. Возникает ситуация, когда важен состав элементов выборки, но несущественен порядок их расположения.

123 124 125 134 135 145

Определение: Сочетанием из n элементов по k ( k n ) называется любое множество, составленное из k элементов, выбранных из данных n элементов (не имеет значения, в каком порядке указаны элементы).

Типичная смысловая нагрузка: «Сколькими способами можно выбрать k объектов из n

Пример 1. В классе 7 человек успешно занимаются математикой. Сколькими способами можно выбрать из них двоих для участия в математической олимпиаде?

Пример 2. На тренировках занимаются 12 баскетболистов. Сколько может быть организовано тренером разных стартовых пятерок?

Пример 3. В ящике находится 15 деталей. Сколькими способами можно взять 4 детали?

Пример 4. Сколькими способами из колоды в 36 карт можно выбрать 3 карты?

Пример 5. Для участия в команде тренер отбирает 5 мальчиков из 10. Сколькими способами он может сформировать команду, если 2 определенных мальчика должны войти в команду?

Решение: Т.к. двое мальчиков войдут в команду, то остается отобрать 3 из 8. Для выборки важен только состав (по условию все члены команды не различаются по ролям).

Пример 6. В шахматном турнире принимали участие 15 шахматистов, причем каждый из них сыграл только одну партию с каждым из остальных. Сколько всего партий было сыграно в этом турнире?

Решение: В одной игре участвуют 2 человека, следовательно, нужно вычислить, сколькими способами можно отобрать 2-х человек из 15, причем порядок в таких парах не важен.

Пример 7. Сколько различных дробей можно составить из чисел 3, 5, 7, 11, 13, 17 так, чтобы в каждую дробь входили 2 различных числа? Сколько среди них будет правильных дробей?

Решение: Различных дробей из 6 чисел: 3, 5, 7, 11, 13, 17 можно составить

штук ( способами выбираем два числа из 6, и двумя способами составляем из них дробь, сначала одно число – числитель, другое – знаменатель и наоборот).

Из этих 30 дробей 15 будут правильные.

Пример 8. Боря, Дима и Володя сели играть в карты. Сколькими способами им можно сдать по одной карте? (колода содержит 36 карт)

– способами можно извлечь 3 карты из колоды. Теперь рассмотрим, какую-нибудь одну из семи тысяч ста сорока комбинаций, например: король пик, 9 червей , 7 червей. Эти 3 карты можно «переставить» между Борей, Димой и Володей P 3 =3!=6способами. Тогда способами можно сдать по одной карте 3-м игрокам.

Правило сложения комбинаций

Знак «плюс» следует понимать и читать как союз ИЛИ.

Задача. Студенческая группа состоит из 23 человек, среди которых 10 юношей и 13 девушек. Сколькими способами можно выбрать 2-х человек одного пола?

Решение: Условие «выбрать 2-х человек одного пола» подразумевает, что необходимо выбрать двух юношей или двух девушек:

– способами можно выбрать 2-х юношей;

– способами можно выбрать 2-х девушек;

Таким образом, двух человек одного пола (без разницы – юношей или девушек) можно выбрать: способами.

Пример 1. В группе 9 человек. Сколько можно образовать разных подгрупп при условии, что в подгруппу входит не менее 2 человек?

Решение: Не менее 2-х человек, т.е. 2+7 или 3+6 или 4+5 человек (5+4, 6+3, 7+2 – те же самые комбинации).

В каждой выборке важен только состав, т.е. члены подгруппы не различаются по ролям, т.е. выборки – сочетания из n различных элементов по m элементов.

Число выборов из 2-х человек:

Число выборов из 3-х человек:

Число выборов из 4-х человек:

Применяем правило сложения: способов.

Правило умножения комбинаций

Знак «умножить» следует понимать и читать как союз И.

Задача. Студенческая группа состоит из 23 человек, среди которых 10 юношей и 13 девушек. Сколькими способами можно составить пару из юноши и девушки?

– способами можно выбрать 1 юношу;

– способами можно выбрать 1 девушку.

Таким образом, 1-го юношу и 1 девушку можно выбрать: способами.

Пример 1. Предприятие может предоставить работу по одной специальности 4 женщинами, по другой – 6 мужчинам, по третьей – 3 работникам независимо от пола. Сколькими способами можно заполнить вакантные места, если имеются 14 претендентов: 6 женщин и 8 мужчин?

Решение: Имеем 14 претендентов и 13 рабочих мест. Сначала выберем работников на первую специальность, то есть 4 женщин из 6:

Далее выберем мужчин на вторую специальность:

Осталось 2 женщины, 2 мужчин и 3 вакантных места, которые, по условию, могут занять любые из четырех оставшихся человек.

Это может быть сделано 2 вариантами:

1 женщина и 2 мужчин (выбираем женщину способами)

1 мужчина и 2 женщины (выбираем мужчину способами).

В итоге получаем 15 · 28 · (2+2)=1680.

Пример 2. Группу из 20 студентов нужно разделить на 3 бригады, причем в первую бригаду должны входить 3 человека, во вторую – 5 и в третью – 12. Сколькими способами это можно сделать.

Решение: Создавая первую бригаду, отбирают 3 человека из 20, создавая вторую – 5 из оставшихся 17, создавая третью – 12 из оставшихся 12. Для выборок важен только состав (роли членов бригады не различаются).

Создавая сложную выборку (из 3-х бригад), воспользуемся правилом умножения:

Пример 3. Сколькими способами может быть сдана выигрышная комбинация из 2-х карт при игре в «очко»?

Для тех, кто не знает: выигрывает комбинация 10 + ТУЗ (11 очков) = 21 очко и будем считать выигрышной комбинацию из 2-х тузов.

способами может быть сдана десятка и туз («каждая десятка с каждым тузом»);

способами может быть сдана пара тузов.

Итого: выигрышные комбинации.

Пример 4. Сколько существует трёхзначных чисел, которые делятся на 5?

В разряде сотен можно записать любую из цифр.

В разряде десятков можно выбрать любую из 10 цифр:

По условию, число должно делиться на 5. Число делится на 5, если оно заканчивается на 5 либо на 0. Таким образом, в младшем разряде нас устраивают 2 цифры.

Итого, существует: трёхзначных чисел, которые делятся на 5.

Перестановки с повторениями

У мамы 2 яблока и 3 груши. Каждый день в течение 5 дней подряд она выдает по одному фрукту. Сколькими способами это может быть сделано?

Решение:Имеем набор <я, я, г, г, г>. Всего перестановок пятиэлементного множества 5!, но мы не должны учитывать перестановки, в которых объекты одного типа меняются местами несколько раз, поэтому нужно поделить на возможное число таких перестановок: 2! · 3!.

В итоге получаем

Пример 1: Сколько различных буквосочетаний можно получить перестанов-кой карточек со следующими буквами: К, О, Л, О, К, О, Л, Ь, Ч, И, К?

Решение: Всего: 11 карточек, среди которых буква:

К – повторяется 3 раза;

О – повторяется 3 раза;

Л – повторяется 2 раза;

Ь – повторяется 1 раз;

Ч – повторяется 1 раз;

И – повторяется 1 раз.

По формуле количества перестановок с повторениями:

Пример 2: Сколько слов можно получить, переставляя буквы в слове Институт?

Решение: В слове «институт» 8 букв, из них две буквы «и», три буквы «т» и по одной букве «н», «с» и «у». Поэтому всего можно получить перестановками букв различных слов.

Пример 3: Алексей занимается спортом, причём 4 дня в неделю – лёгкой атлетикой, 2 дня – силовыми упражнениями и 1 день отдыхает. Сколькими способами он может составить себе расписание занятий на неделю?

Решение: По формуле количества перестановок с повторениями:

способами можно составить расписание занятий на неделю.

Пример 4: Сколько чисел, больших 3000000, можно составить из цифр 3, 2, 2, 1, 1, 1, 0.

Решение: На первом месте обязательно должна стоять тройка. Оставшиеся 6 цифр образуют перестановку с повторениями:.

Сочетания с повторениями

В студенческой столовой продают сосиски в тесте, ватрушки и пончики. Сколькими способами можно приобрести пять пирожков?

Решение ( I способ.) :Обратите внимание на критерий сочетаний с повторениями – по условию на выбор предложено не множество объектов как таковое, а различные виды объектов; при этом предполагается, что в продаже есть не менее пяти хот-догов, 5 ватрушек и 5 пончиков.

Что может быть в выборке?

Варианты: 5 хот-догов, 5 ватрушек, 5 пончиков, 3 хот-дога + 2 ватрушки, 1 хот-дог + 2 ватрушки + 2 пончика и т.д. Всего 21 способ.

Ответ: 21 способ.

Типичная смысловая нагрузка: «Для выбора предложено n множеств, каждое из которых состоит из одинаковых объектов. Сколькими способами можно выбрать m объектов?»

Используя формулу количества сочетаний с повторениями, получаем

способом можно приобрести 5 пирожков.

Пример 1: В кошельке находится достаточно большое количество рублей, 2-х, 5-ти и десятирублёвых монет. Сколькими способами можно извлечь три монеты из кошелька?

Решение: Используя формулу количества сочетаний с повторениями, получаем

способами можно выбрать 3 монеты из кошелька.

Пример 2: В почтовом отделении продаются открытки 10 видов. Сколькими способами можно купить 12 открыток для поздравлений?

Размещения с повторениями

Сколько существует четырёхзначных пин-кодов?

Решение:Для решения задачи достаточно знаний правил комбинаторики:

способами можно выбрать первую цифру пин-кода и способами – вторую цифру пин кода и столькими же способами – третью и столькими же – четвёртую. Таким образом, по правилу умножения комбинаций, четырёхзначный пин-код можно составить: способами.

Типичная смысловая нагрузка: «Дано множество, состоящее из n объектов, при этом любой объект можно выбирать неоднократно. Сколькими способами можно выбрать m объектов, если важен порядок их расположения в выборке?

В частности, возможен случай, когда из n имеющихся объектов m раз будет выбран какой-то один объект».

Пример 1: Согласно государственному стандарту, автомобильный номерной знак состоит из 3 цифр и 3 букв. При этом недопустим номер с тремя нулями, а буквы выбираются из набора А, В, Е, К, М, Н, О, Р, С, Т, У, Х (используются только те буквы кириллицы, написание которых совпадает с латинскими буквами).

Сколько различных номерных знаков можно составить для региона?

– способами можно составить цифровую комбинацию автомобильного номера, при этом одну из них (000) следует исключить

– способами можно составить буквенную комбинацию автомобильного номера.

По правилу умножения комбинаций, всего можно составить

Пример 2: Человек, пришедший в гости, забыл код, открывающий дверь подъезда, но помнил, что он составлен из нулей и единиц и всего имеет четыре цифры. Сколько вариантов кода в худшем случае ему придётся перебрать, чтобы открыть дверь?

Пример 3: Каких чисел от 1 до 1 000 000 больше: тех, в записи которых встречается единица, или тех, в которых она не встречается?

Решение: Подсчитаем количество чисел от 1 до 999999 в записи которых нет единиц. Каждую цифру можно выбрать 9 способами (любая цифра кроме 1), поэтому все 6 цифр можно выбрать 9 6 способами. При этом один вариант (000000) нужно убрать, так как число 0 не рассматривается. Получаем всего 9 6 −1=531440 чисел. Так как всего чисел 1 000 000, то видно, что чисел без единицы среди чисел от 1 до 1 000 000 больше, чем тех, в записи которых единица есть.

Ответ: чисел без единицы больше.

(разработка + презентация) на тему «Комбинаторика для школьников любого возраста»

5. http :// infourok . ru / material . html ? mid =4205 – Урок математики в 7 классе на тему «Комбинаторика»

6. http :// festival .1 september . ru / articles /603009 / – «Комбинаторика – это . » (урок конструирования комбинаторных задач)

8. Математика. 6 класс: Учеб. для общеобразоват. учеб. заведений/Г.В. Дорофеев, С.Б.Суворова, И.Ф.Шарыгин и др.; Под ред. Г.В.Дорофеева, И.Ф.Шарыгина. – 7-е изд., стереотип. – М.: Дрофа, 2010. -416 с.: ил.

Источник

Читайте также:  Беталок зок способ применения
Оцените статью
Разные способы