Сколькими способами можно разместить 5 человек за столом за которым поставлено 5 приборов

Сколькими способами можно разместить 5 человек за столом за которым поставлено 5 приборов

В школьном курсе понятие «круговые перестановки» встречается в 7 классе в учебнике по алгебре в разделе «Для тех, кому интересно» [3].

В комбинаторных задачах часто ставится вопрос о том, сколькими способами можно расположить в ряд, или, как говорят математики, упорядочить, все элементы некоторого множества.

Каждое расположение элементов множества в определенном порядке называют перестановкой. Получаемые при этом упорядоченные множества, которые отличаются друг от друга лишь порядком входящих в них элементов, называют перестановками без повторений из п элементовили «круговыми перестановками».

Из истории комбинаторики

Комбинаторика занимается различного вида соединениями, которые можно образовать из элементов конечного множества. Некоторые элементы комбинаторики были известны в Индии еще во II в. до н. э. Индийцы умели вычислять числа, которые сейчас называют “сочетания”. В ХII в. Бхаскара вычислял некоторые виды сочетаний и перестановок. Предполагают, что индийские ученые изучали соединения в связи с применением их в поэтике, науке о структуре стиха и поэтических произведениях. Например, в связи с подсчетом возможных сочетаний ударных (долгих) и безударных (кратких) слогов стопы из п слогов. Как научная дисциплина, комбинаторика сформировалась в Х V II в. В книге “Теория и практика арифметики” (1656 г.) французский автор Андре Таке также посвящает сочетаниям и перестановкам целую главу.

Б. Паскаль в “Трактате об арифметическом треугольнике” и в “Трактате о числовых порядках” (1665 г.) изложил учение о биномиальных коэффициентах. П. Ферма знал о связях математических квадратов и фигурных чисел с теорией соединений. Термин “комбинаторика” стал употребляться после опубликования Лейбницем в 1665 г. работы “Рассуждение о комбинаторном искусстве”, в которой впервые дано научное обоснование теории сочетаний и перестановок. Изучением размещений впервые занимался Я. Бернулли во второй части своей книги “Аг s соп j ес t ап d i” (искусство предугадывания) в 1713 г. Современная символика сочетаний была предложена разными авторами учебных руководств только в ХIХ в [4].

Все разнообразие комбинаторных формул может быть выведено из двух основных утверждений, касающихся конечных множеств — правило суммы и правило произведения. При решении задач на перестановки используется правило умножения.

Каждое расположение элементов множества в определенном порядке называют перестановкой. Рассмотрим задачу: В турнире четверо участников. Сколькими способами могут быть распределены места между ними?

Будем рассуждать в соответствии с правилом умножения. Первое место может занять любой из четырех участников. При этом второе место может занять любой из трех оставшихся, третье любой из двух оставшихся, а на четвертом месте останется последний участник. Значит, места между участниками могут быть распределены 4 ۰ 3 ۰ 2 ۰ 1 = 24 способами. Решив задачу, мы фактически подсчитали число перестановок для множества из четырех элементов. Рассуждая точно так же, можно показать, что для множества из пяти элементов число перестановок равно 5 ۰ 4 ۰ 3 ۰ 2 ۰ 1, а для множества из десяти элементов это число равно 10 ۰ 9 ۰ 8 ۰ 7 ۰ б ۰ 5 ۰ 4 ۰ 3 ۰ 2 ۰ 1.

Вообще если множество содержит п элементов, то число перестановок равно произведению п(п – 1)(п – 2) ۰…۰ 2 ۰ 1. Множители в этом произведении можно записать в обратном порядке: 1 ۰ 2 ۰ . ۰ (п – 2)(п – 1)п.

Такие произведения бывают очень длинными и часто выражаются огромными числами. Однако в математике есть специальный символ для их обозначения. Произведение всех натуральных чисел от 1 до п обозначают п! (читают: «п факториал»). Значение выражения п! можно найти для любого натурального числа п (при этом считают, что 1! = 1).

Факториалы растут удивительно быстро. Можно понаблюдать за их изменением, рассмотрев таблицу, в которой приведены факториалы чисел от 1 до 10:

Источник

Сколькими способами можно разместить 5 человек за столом за которым поставлено 5 приборов

В школьном курсе понятие «круговые перестановки» встречается в 7 классе в учебнике по алгебре в разделе «Для тех, кому интересно» [3].

В комбинаторных задачах часто ставится вопрос о том, сколькими способами можно расположить в ряд, или, как говорят математики, упорядочить, все элементы некоторого множества.

Каждое расположение элементов множества в определенном порядке называют перестановкой. Получаемые при этом упорядоченные множества, которые отличаются друг от друга лишь порядком входящих в них элементов, называют перестановками без повторений из п элементовили «круговыми перестановками».

Из истории комбинаторики

Комбинаторика занимается различного вида соединениями, которые можно образовать из элементов конечного множества. Некоторые элементы комбинаторики были известны в Индии еще во II в. до н. э. Индийцы умели вычислять числа, которые сейчас называют “сочетания”. В ХII в. Бхаскара вычислял некоторые виды сочетаний и перестановок. Предполагают, что индийские ученые изучали соединения в связи с применением их в поэтике, науке о структуре стиха и поэтических произведениях. Например, в связи с подсчетом возможных сочетаний ударных (долгих) и безударных (кратких) слогов стопы из п слогов. Как научная дисциплина, комбинаторика сформировалась в Х V II в. В книге “Теория и практика арифметики” (1656 г.) французский автор Андре Таке также посвящает сочетаниям и перестановкам целую главу.

Читайте также:  Препарат трекрезан способ применения

Б. Паскаль в “Трактате об арифметическом треугольнике” и в “Трактате о числовых порядках” (1665 г.) изложил учение о биномиальных коэффициентах. П. Ферма знал о связях математических квадратов и фигурных чисел с теорией соединений. Термин “комбинаторика” стал употребляться после опубликования Лейбницем в 1665 г. работы “Рассуждение о комбинаторном искусстве”, в которой впервые дано научное обоснование теории сочетаний и перестановок. Изучением размещений впервые занимался Я. Бернулли во второй части своей книги “Аг s соп j ес t ап d i” (искусство предугадывания) в 1713 г. Современная символика сочетаний была предложена разными авторами учебных руководств только в ХIХ в [4].

Все разнообразие комбинаторных формул может быть выведено из двух основных утверждений, касающихся конечных множеств — правило суммы и правило произведения. При решении задач на перестановки используется правило умножения.

Каждое расположение элементов множества в определенном порядке называют перестановкой. Рассмотрим задачу: В турнире четверо участников. Сколькими способами могут быть распределены места между ними?

Будем рассуждать в соответствии с правилом умножения. Первое место может занять любой из четырех участников. При этом второе место может занять любой из трех оставшихся, третье любой из двух оставшихся, а на четвертом месте останется последний участник. Значит, места между участниками могут быть распределены 4 ۰ 3 ۰ 2 ۰ 1 = 24 способами. Решив задачу, мы фактически подсчитали число перестановок для множества из четырех элементов. Рассуждая точно так же, можно показать, что для множества из пяти элементов число перестановок равно 5 ۰ 4 ۰ 3 ۰ 2 ۰ 1, а для множества из десяти элементов это число равно 10 ۰ 9 ۰ 8 ۰ 7 ۰ б ۰ 5 ۰ 4 ۰ 3 ۰ 2 ۰ 1.

Вообще если множество содержит п элементов, то число перестановок равно произведению п(п – 1)(п – 2) ۰…۰ 2 ۰ 1. Множители в этом произведении можно записать в обратном порядке: 1 ۰ 2 ۰ . ۰ (п – 2)(п – 1)п.

Такие произведения бывают очень длинными и часто выражаются огромными числами. Однако в математике есть специальный символ для их обозначения. Произведение всех натуральных чисел от 1 до п обозначают п! (читают: «п факториал»). Значение выражения п! можно найти для любого натурального числа п (при этом считают, что 1! = 1).

Факториалы растут удивительно быстро. Можно понаблюдать за их изменением, рассмотрев таблицу, в которой приведены факториалы чисел от 1 до 10:

Источник

» Знакомьтесь, комбинаторика! «, методическая разработка урока, 5 класс
учебно-методический материал по алгебре (5 класс) по теме

Данная методическая разработка содержит план- конспект урока и презентацию к уроку, надеюсь, что моя работа будет полезна коллегам.

Скачать:

Вложение Размер
znakomtes_kombinatorika_kozhokar_i.e.docx 99.07 КБ
znakomtes_kombinatorika_kozhokar_i.e.pptx 2.92 МБ

Предварительный просмотр:

Методическая разработка урока по математике в 5 классе

Кожокарь Ирина Евгеньевна, учитель математики.

ГБОУ СОШ № 354 г. Санкт-Петербурга

Тема урока: Знакомьтесь, комбинаторика!

Цель урока : сформулировать первоначальные навыки комбинаторных задач с помощью перебора возможных вариантов.

  1. Развитие умения решать комбинаторные задачи методом полного перебора вариантов;
  2. Выработка умения применять математическую теорию в конкретных ситуациях;
  3. Знакомство учащихся с элементами гуманитарного знания, связанного с математикой.
  1. Развитие умения самостоятельно выбирать способ решения и умения обосновать выбор;
  2. Развитие умения решать задачи путём только логических рассуждений;
  3. Развитие умения делать выбор рационального способа кодирования;
  4. Развитие коммуникативных и творческих способностей учащихся.
  1. Воспитывать чувство ответственности за качество и результат выполняемой работы;
  2. Прививать сознательное отношение к труду;
  1. Формировать ответственность за конечный результат .
  1. интерактивная доска;
  2. раздаточный материал (цветные полоски: белая, синяя, красная);
  3. карточки с задачами.
  1. Организационный момент.
  2. Актуализация темы и мотивация.
  3. Изучение нового материала.
  4. Практическая часть.
  5. Рефлексия
  6. Выставление отметок
  7. Задание домашней работы

Учитель: Здравствуйте, ребята!

Очень часто в жизни приходится делать выбор, принимать решение. Это сделать очень трудно, не потому что выбора нет, а потому что приходится выбирать из множества возможных вариантов, различных способов, комбинаций. И нам всегда хочется, чтобы этот выбор был оптимальный.

Задачи, которые мы сегодня будем решать помогут вам творить, думать необычно, оригинально, видеть то, мимо чего вы часто проходили не замечая.

И еще сегодня в очередной раз убедимся, что наш мир полон математики и продолжим исследование на предмет выявления математики вокруг нас.

  1. Актуализация темы и мотивация.

Давайте решим задачу №1,

Задача 1 . У кассы кинотеатра стоят четверо ребят. У двух из них сторублевые купюры, у других двух – пятидесятирублевые. (Учитель вызывает 4 учеников к доске и дает им модели купюр). Билет в кино стоит 50 рублей. В начале продажи касса пуста. (Учитель вызывает «кассира» и дает ему «билеты») . Как должны расположиться ребята, чтобы никому не пришлось ждать сдачи?

Разыгрываем сценку, с помощью которой можно найти два возможных варианта решения:

  1. 50 рублей, 100 рублей, 50 рублей, 100 рублей;
  2. 50 рублей, 50 рублей, 100 рублей, 100 рублей (слайд №2 и №3).

Задача №2 . Несколько стран решили использовать для своего государственного флага символику в виде трех горизонтальных полос одинаковой ширины разных цветов – белого, синего, красного. Сколько стран могут использовать такую символику при условии, что у каждой страны – свой флаг?

( Учащимся раздаются цветные полоски (белый, синий, красный) и предлагается составить разные варианты флагов ? (Слайд№4)

  1. Изучение нового материала .

Учитель: При решении этих задач мы осуществили перебор всех возможных вариантов,

или, как обычно говорят в этих случаях, всех возможных комбинаций. Поэтому подобные задачи называют комбинаторными. Просчитывать возможные (или невозможные) варианты в жизни приходится довольно часто, поэтому полезно познакомиться с комбинаторными задачами, а раздел математики, занимающийся решением этих задач, называется комбинаторикой. (Слайд№5)

Определение учащиеся записывают в тетрадь:

Комбинаторика – это раздел математики, посвященный решению задач выбора и расположения заданных элементов по заданным правилам

Обычный вопрос в комбинаторных задачах – это « Сколькими способами …?» или

Учитель : Давайте еще раз вернемся к задаче о флагах, решим ее используя перебор возможных вариантов: (слайд №7)

Ответ: 6 вариантов.

Итак, при решении этой задачи мы искали способ перебора возможных вариантов. Во

многих случаях оказывается полезным прием построения картинки – схемы перебора вариантов. Это, во – первых, наглядно , во- вторых, позволяет нам все учесть, ничего не пропустить.

Варианты БСК, БКС, СБК, СКБ, КБС, КСБ.

Ответ: 6 вариантов.

Вопрос, ответ на который должны знать все, какой из представленных вариантов флагов – государственный флаг РФ.(Слайд№7)

Оказывается, Не только флаг России имеет эти три цвета. Есть государства, флаги которых, имеют такие же цвета.

Учитель: Найдем правило решения таких задач путем логического рассуждения.

Разберем на примере цветных полосок. Возьмем белую полоску – её можно переставить 3 раза, возьмем синюю полоску – её можно переставить только 2 раза, т.к. одно из мест уже занято белой, возьмем красную полоску – её можно положить только 1 раз.

ИТОГО: 3 х 2 х 1=6

Основное правило произведения :

Правило умножения: если первый элемент в комбинации можно выбрать а способами, после чего второй элемент – b способами, то общее число комбинаций будет равно а х b . (слайд №8)

Физкультминутка для глаз. (слайд №9)

Нарисовать глазами квадрат, круг, треугольник, овал, ромб по часовой стрелке, а затем- против.

Учитель: А теперь перейдем к математическим задачам. (раздаем карточки с задачами)

  1. У одного довольно знаменитого мушкетера в гардеробе имеются 3 элегантных шляпы ,4 чудных плаща и 2 пары отличных сапог. Сколько вариантов костюма ему можно составить? (Выбираем по одному элементу из трех множеств, то есть, составляем «тройку», значит, по правилу умножения получаем 3 • 4 • 2 = 24 варианта костюма.)
  2. В футбольной команде 11 человек. Необходимо выбрать капитана и его заместителя. Сколькими способами можно это сделать? (Всего 11 человек, значит, капитана можно выбрать 11 способами, осталось 10 футболистов, из которых можно выбрать заместителя капитана. Итак, пару капитана и его заместителя можно выбрать 11 • 10 = 110 способами.)
  3. Сколько различных двузначных чисел можно составить, используя цифры 1, 4, 7, если допустить повторение цифр? (Должно получиться двузначное число – всего две позиции. На первую позицию можно поставить любую из предложенных цифр – 3 варианта выбора, на вторую позицию, с учетом возможности повтора цифры, тоже 3 варианта выбора. Значит, пару цифр мы составляем 3 • 3 = 9 способами, т.е. получится 9 чисел.
  4. Сколько различных трехзначных чисел можно составить из цифр 1, 2, 3, 4, 5 при условии, что ни одна цифра не повторяется? (Трехзначное число: первая позиция – 5 вариантов цифр, вторая позиция с учетом исключения повторов цифр — 4 варианта, третья позиция – 3 варианта. Получаем 5 • 4 • 3 = 60 чисел.)
  5. Сколько различных двузначных чисел можно составить из цифр 0, 1, 2, 3, если цифры: а) могут повторяться; б) не могут повторяться? ( а) Двузначное число, как и любое многозначное, не может начинаться с 0, поэтому на первую позицию можно поставить лишь 3 из имеющихся 4-х цифр, 3 варианта выбора, на вторую позицию, с учетом повтора, можно поставить любую из цифр – 4 варианта выбора. Поэтому получается 3 • 4 = 12 чисел; б) Первая позиция – 3 варианта, вторая позиция – 3 варианта, т.к. повтор исключается. Получаем 3 • 3 = 9 чисел.)
  6. Шифр для сейфа состоит из пяти различных цифр. Сколько различных вариантов составления шифра? (5 • 4 • 3 • 2 • 1 = 120 вариантов.) Сколькими способами можно разместить 6 человек за столом, на котором поставлено 6 приборов? (6 • 5 • 4 • 3 • 2 • 1 = 720 способов.)
  7. Сколькими способами можно разместить 6 человек за столом, на котором поставлено 6 приборов? (6 · 5 · 4 · 3 · 2 · 1 = 720 способов.)
  8. В пятом классе изучаются 8 предметов. Сколько различных вариантов расписания можно составить на понедельник, если в этот день должно быть 5 уроков и все уроки – разные? (8 · 7 · 6 · 5 · 4 = 6720 вариантов.)
  9. Сколько вариантов семизначных телефонных номеров можно составить, если исключить из них номера, начинающиеся с 0 и 9? (Используются цифры 0, 1, 2, 3, 4, 5, 6, 7, 8, 9 – всего 10 цифр, исключая по условию 0 и 9 в начале номера, с учетом возможности повтора, получаем 8 · 10 · 10 · 10 · 10 · 10 · 10 = 8 000 000 номеров.)
  1. Рефлексия

Учитель: Ребята вот и подходит к концу наш урок. Как вы считаете, мы сегодня достигли нашей цели, почему? Что было трудным на уроке, как с эти можно бороться? Подумайте и поставьте себе за свой труд и работу отметку, поставьте сами, эту отметку никто из ребят не увидит, попробуйте быть честным с самим собой. Полностью ли вы участвовали в работе на уроке? Что нужно сделать, чтобы результат был лучше?

Кроме того, ученикам предлагается ответить на 3 блиц — вопроса:

  1. На сегодняшнем уроке мне было … (легко, обычно, трудно)
  2. Новый материал я … (усвоил и могу применить, усвоил и затрудняюсь применить, не усвоил)
  3. Моя самооценка за урок …

Ответы на приведенные вопросы можно не подписывать, т.к. их основная функция помочь учителю проанализировать урок и его результаты

  1. Подведение итогов . Выставление отметок

7. Задание домашней работы :

1)Составить задачу о своем классе

2) Несколько стран решили использовать для своего государственного флага символику в виде 3 горизонтальных полос разной ширины, разных цветов – белый, синий, красный. Сколько стран могут использовать такую символику при условии ,что у каждой страны свой флаг?

3) а) Сколько двузначных чисел можно составить из цифр 1, 3, 5, 7, 9?

б) Сколько двузначных чисел можно составить из цифр 1, 3, 5, 7, 9 при условии, что цифры не должны повторяться

Учитель : Итак, я была рада встрече с вами, интересуйтесь математикой, это, несомненно, отразится в положительную сторону в ваших размышлениях и действиях. До свидания

Е.А.Бунимович, В.А. Булычев. Вероятность и статистика в курсе математики общеобразовательной школы: лекции 1- 4, 5 – 8. – М.: Педагогический университет “Первое сентября”, 2006.

Виленкин Н.Я. Математика. 5 класс: учебник для общеобразоват. учреждений/ Н.Я.Виленкин и др. – М. : Мнемозина, 2009.

Смыкалова Е.В. Дополнительные главы по математике для учащихся 5 класса. СПб: СМИО. Пресс, 2006.

5 класс. «Математика-5», И.И. Зубарева, А.Г. Мордкович, 2004 год.

  1. У одного довольно знаменитого мушкетера в гардеробе имеются 3 элегантных шляпы ,4 чудных плаща и 2 пары отличных сапог. Сколько вариантов костюма ему можно составить?
  2. В футбольной команде 11 человек. Необходимо выбрать капитана и его заместителя. Сколькими способами можно это сделать?
  3. Сколько различных двузначных чисел можно составить, используя цифры 1, 4, 7, если допустить повторение цифр
  4. Сколько различных трехзначных чисел можно составить из цифр 1, 2, 3, 4, 5 при условии, что ни одна цифра не повторяется?
  5. Сколько различных двузначных чисел можно составить из цифр 0, 1, 2, 3, если цифры: а) могут повторяться; б) не могут повторяться?
  6. Шифр для сейфа состоит из пяти различных цифр. Сколько различных вариантов составления шифра?
  7. Сколькими способами можно разместить 6 человек за столом, на котором поставлено 6 приборов?
  8. В пятом классе изучаются 8 предметов. Сколько различных вариантов расписания можно составить на понедельник, если в этот день должно быть 5 уроков и все уроки – разные?
  9. Сколько вариантов семизначных телефонных номеров можно составить, если исключить из них номера, начинающиеся с 0 и 9?
  1. Выбираем по одному элементу из трех множеств, то есть, составляем «тройку», значит, по правилу умножения получаем 3 • 4 • 2 = 24 варианта костюма.
  2. Всего 11 человек, значит, капитана можно выбрать 11-ю способами, осталось 10 футболистов, из которых можно выбрать заместителя капитана. Итак, пару, капитана и его заместителя, можно выбрать 11 • 10 = 110 способами.
  3. Должно получиться двузначное число – всего две позиции. На первую позицию можно поставить любую из предложенных цифр – 3 варианта выбора, на вторую позицию, с учетом возможности повтора цифры, тоже 3 варианта выбора. Значит, пару цифр мы составляем 3 • 3 = 9 способами, т.е. получится 9 чисел.
  4. Трехзначное число: первая позиция – 5 вариантов цифр, вторая позиция, с учетом исключения повторов цифр, — 4 варианта, третья позиция – 3 варианта. Получаем 5 • 4 • 3 = 60 чисел.
  5. ( а) Двузначное число, как и любое многозначное, не может начинаться с 0, поэтому на первую позицию можно поставить лишь 3 из имеющихся 4-х цифр, 3 варианта выбора, на вторую позицию, с учетом повтора, можно поставить любую из цифр – 4 варианта выбора. Поэтому получается 3 • 4 = 12 чисел; б) Первая позиция – 3 варианта, вторая позиция – 3 варианта, т.к. повтор исключается. Получаем 3 • 3 = 9 чисел.
  6. 5 • 4 • 3 • 2 • 1 = 120 вариантов.
  7. 6 • 5 • 4 • 3 • 2 • 1 = 720 способов
  8. 8 • 7 • 6 • 5 • 4 = 6720 вариантов
  9. Используются цифры 0, 1, 2, 3, 4, 5, 6, 7, 8, 9 – всего 10 цифр, исключая по условию 0 и 9 в начале номера, с учетом возможности повтора, получаем 8 • 10 • 10 • 10 • 10 • 10 • 10 = 8 000 000 номеров.

Источник

Читайте также:  Перец безрассадный способ выращивания
Оцените статью
Разные способы