- Сколькими способами можно разместить 5 человек за столом за которым поставлено 5 приборов
- Сколькими способами можно разместить 5 человек за столом за которым поставлено 5 приборов
- » Знакомьтесь, комбинаторика! «, методическая разработка урока, 5 класс учебно-методический материал по алгебре (5 класс) по теме
- Скачать:
- Предварительный просмотр:
Сколькими способами можно разместить 5 человек за столом за которым поставлено 5 приборов
В школьном курсе понятие «круговые перестановки» встречается в 7 классе в учебнике по алгебре в разделе «Для тех, кому интересно» [3].
В комбинаторных задачах часто ставится вопрос о том, сколькими способами можно расположить в ряд, или, как говорят математики, упорядочить, все элементы некоторого множества.
Каждое расположение элементов множества в определенном порядке называют перестановкой. Получаемые при этом упорядоченные множества, которые отличаются друг от друга лишь порядком входящих в них элементов, называют перестановками без повторений из п элементовили «круговыми перестановками».
Из истории комбинаторики
Комбинаторика занимается различного вида соединениями, которые можно образовать из элементов конечного множества. Некоторые элементы комбинаторики были известны в Индии еще во II в. до н. э. Индийцы умели вычислять числа, которые сейчас называют “сочетания”. В ХII в. Бхаскара вычислял некоторые виды сочетаний и перестановок. Предполагают, что индийские ученые изучали соединения в связи с применением их в поэтике, науке о структуре стиха и поэтических произведениях. Например, в связи с подсчетом возможных сочетаний ударных (долгих) и безударных (кратких) слогов стопы из п слогов. Как научная дисциплина, комбинаторика сформировалась в Х V II в. В книге “Теория и практика арифметики” (1656 г.) французский автор Андре Таке также посвящает сочетаниям и перестановкам целую главу.
Б. Паскаль в “Трактате об арифметическом треугольнике” и в “Трактате о числовых порядках” (1665 г.) изложил учение о биномиальных коэффициентах. П. Ферма знал о связях математических квадратов и фигурных чисел с теорией соединений. Термин “комбинаторика” стал употребляться после опубликования Лейбницем в 1665 г. работы “Рассуждение о комбинаторном искусстве”, в которой впервые дано научное обоснование теории сочетаний и перестановок. Изучением размещений впервые занимался Я. Бернулли во второй части своей книги “Аг s соп j ес t ап d i” (искусство предугадывания) в 1713 г. Современная символика сочетаний была предложена разными авторами учебных руководств только в ХIХ в [4].
Все разнообразие комбинаторных формул может быть выведено из двух основных утверждений, касающихся конечных множеств — правило суммы и правило произведения. При решении задач на перестановки используется правило умножения.
Каждое расположение элементов множества в определенном порядке называют перестановкой. Рассмотрим задачу: В турнире четверо участников. Сколькими способами могут быть распределены места между ними?
Будем рассуждать в соответствии с правилом умножения. Первое место может занять любой из четырех участников. При этом второе место может занять любой из трех оставшихся, третье любой из двух оставшихся, а на четвертом месте останется последний участник. Значит, места между участниками могут быть распределены 4 ۰ 3 ۰ 2 ۰ 1 = 24 способами. Решив задачу, мы фактически подсчитали число перестановок для множества из четырех элементов. Рассуждая точно так же, можно показать, что для множества из пяти элементов число перестановок равно 5 ۰ 4 ۰ 3 ۰ 2 ۰ 1, а для множества из десяти элементов это число равно 10 ۰ 9 ۰ 8 ۰ 7 ۰ б ۰ 5 ۰ 4 ۰ 3 ۰ 2 ۰ 1.
Вообще если множество содержит п элементов, то число перестановок равно произведению п(п – 1)(п – 2) ۰…۰ 2 ۰ 1. Множители в этом произведении можно записать в обратном порядке: 1 ۰ 2 ۰ . ۰ (п – 2)(п – 1)п.
Такие произведения бывают очень длинными и часто выражаются огромными числами. Однако в математике есть специальный символ для их обозначения. Произведение всех натуральных чисел от 1 до п обозначают п! (читают: «п факториал»). Значение выражения п! можно найти для любого натурального числа п (при этом считают, что 1! = 1).
Факториалы растут удивительно быстро. Можно понаблюдать за их изменением, рассмотрев таблицу, в которой приведены факториалы чисел от 1 до 10:
Источник
Сколькими способами можно разместить 5 человек за столом за которым поставлено 5 приборов
В школьном курсе понятие «круговые перестановки» встречается в 7 классе в учебнике по алгебре в разделе «Для тех, кому интересно» [3].
В комбинаторных задачах часто ставится вопрос о том, сколькими способами можно расположить в ряд, или, как говорят математики, упорядочить, все элементы некоторого множества.
Каждое расположение элементов множества в определенном порядке называют перестановкой. Получаемые при этом упорядоченные множества, которые отличаются друг от друга лишь порядком входящих в них элементов, называют перестановками без повторений из п элементовили «круговыми перестановками».
Из истории комбинаторики
Комбинаторика занимается различного вида соединениями, которые можно образовать из элементов конечного множества. Некоторые элементы комбинаторики были известны в Индии еще во II в. до н. э. Индийцы умели вычислять числа, которые сейчас называют “сочетания”. В ХII в. Бхаскара вычислял некоторые виды сочетаний и перестановок. Предполагают, что индийские ученые изучали соединения в связи с применением их в поэтике, науке о структуре стиха и поэтических произведениях. Например, в связи с подсчетом возможных сочетаний ударных (долгих) и безударных (кратких) слогов стопы из п слогов. Как научная дисциплина, комбинаторика сформировалась в Х V II в. В книге “Теория и практика арифметики” (1656 г.) французский автор Андре Таке также посвящает сочетаниям и перестановкам целую главу.
Б. Паскаль в “Трактате об арифметическом треугольнике” и в “Трактате о числовых порядках” (1665 г.) изложил учение о биномиальных коэффициентах. П. Ферма знал о связях математических квадратов и фигурных чисел с теорией соединений. Термин “комбинаторика” стал употребляться после опубликования Лейбницем в 1665 г. работы “Рассуждение о комбинаторном искусстве”, в которой впервые дано научное обоснование теории сочетаний и перестановок. Изучением размещений впервые занимался Я. Бернулли во второй части своей книги “Аг s соп j ес t ап d i” (искусство предугадывания) в 1713 г. Современная символика сочетаний была предложена разными авторами учебных руководств только в ХIХ в [4].
Все разнообразие комбинаторных формул может быть выведено из двух основных утверждений, касающихся конечных множеств — правило суммы и правило произведения. При решении задач на перестановки используется правило умножения.
Каждое расположение элементов множества в определенном порядке называют перестановкой. Рассмотрим задачу: В турнире четверо участников. Сколькими способами могут быть распределены места между ними?
Будем рассуждать в соответствии с правилом умножения. Первое место может занять любой из четырех участников. При этом второе место может занять любой из трех оставшихся, третье любой из двух оставшихся, а на четвертом месте останется последний участник. Значит, места между участниками могут быть распределены 4 ۰ 3 ۰ 2 ۰ 1 = 24 способами. Решив задачу, мы фактически подсчитали число перестановок для множества из четырех элементов. Рассуждая точно так же, можно показать, что для множества из пяти элементов число перестановок равно 5 ۰ 4 ۰ 3 ۰ 2 ۰ 1, а для множества из десяти элементов это число равно 10 ۰ 9 ۰ 8 ۰ 7 ۰ б ۰ 5 ۰ 4 ۰ 3 ۰ 2 ۰ 1.
Вообще если множество содержит п элементов, то число перестановок равно произведению п(п – 1)(п – 2) ۰…۰ 2 ۰ 1. Множители в этом произведении можно записать в обратном порядке: 1 ۰ 2 ۰ . ۰ (п – 2)(п – 1)п.
Такие произведения бывают очень длинными и часто выражаются огромными числами. Однако в математике есть специальный символ для их обозначения. Произведение всех натуральных чисел от 1 до п обозначают п! (читают: «п факториал»). Значение выражения п! можно найти для любого натурального числа п (при этом считают, что 1! = 1).
Факториалы растут удивительно быстро. Можно понаблюдать за их изменением, рассмотрев таблицу, в которой приведены факториалы чисел от 1 до 10:
Источник
» Знакомьтесь, комбинаторика! «, методическая разработка урока, 5 класс
учебно-методический материал по алгебре (5 класс) по теме
Данная методическая разработка содержит план- конспект урока и презентацию к уроку, надеюсь, что моя работа будет полезна коллегам.
Скачать:
Вложение | Размер |
---|---|
znakomtes_kombinatorika_kozhokar_i.e.docx | 99.07 КБ |
znakomtes_kombinatorika_kozhokar_i.e.pptx | 2.92 МБ |
Предварительный просмотр:
Методическая разработка урока по математике в 5 классе
Кожокарь Ирина Евгеньевна, учитель математики.
ГБОУ СОШ № 354 г. Санкт-Петербурга
Тема урока: Знакомьтесь, комбинаторика!
Цель урока : сформулировать первоначальные навыки комбинаторных задач с помощью перебора возможных вариантов.
- Развитие умения решать комбинаторные задачи методом полного перебора вариантов;
- Выработка умения применять математическую теорию в конкретных ситуациях;
- Знакомство учащихся с элементами гуманитарного знания, связанного с математикой.
- Развитие умения самостоятельно выбирать способ решения и умения обосновать выбор;
- Развитие умения решать задачи путём только логических рассуждений;
- Развитие умения делать выбор рационального способа кодирования;
- Развитие коммуникативных и творческих способностей учащихся.
- Воспитывать чувство ответственности за качество и результат выполняемой работы;
- Прививать сознательное отношение к труду;
- Формировать ответственность за конечный результат .
- интерактивная доска;
- раздаточный материал (цветные полоски: белая, синяя, красная);
- карточки с задачами.
- Организационный момент.
- Актуализация темы и мотивация.
- Изучение нового материала.
- Практическая часть.
- Рефлексия
- Выставление отметок
- Задание домашней работы
Учитель: Здравствуйте, ребята!
Очень часто в жизни приходится делать выбор, принимать решение. Это сделать очень трудно, не потому что выбора нет, а потому что приходится выбирать из множества возможных вариантов, различных способов, комбинаций. И нам всегда хочется, чтобы этот выбор был оптимальный.
Задачи, которые мы сегодня будем решать помогут вам творить, думать необычно, оригинально, видеть то, мимо чего вы часто проходили не замечая.
И еще сегодня в очередной раз убедимся, что наш мир полон математики и продолжим исследование на предмет выявления математики вокруг нас.
- Актуализация темы и мотивация.
Давайте решим задачу №1,
Задача 1 . У кассы кинотеатра стоят четверо ребят. У двух из них сторублевые купюры, у других двух – пятидесятирублевые. (Учитель вызывает 4 учеников к доске и дает им модели купюр). Билет в кино стоит 50 рублей. В начале продажи касса пуста. (Учитель вызывает «кассира» и дает ему «билеты») . Как должны расположиться ребята, чтобы никому не пришлось ждать сдачи?
Разыгрываем сценку, с помощью которой можно найти два возможных варианта решения:
- 50 рублей, 100 рублей, 50 рублей, 100 рублей;
- 50 рублей, 50 рублей, 100 рублей, 100 рублей (слайд №2 и №3).
Задача №2 . Несколько стран решили использовать для своего государственного флага символику в виде трех горизонтальных полос одинаковой ширины разных цветов – белого, синего, красного. Сколько стран могут использовать такую символику при условии, что у каждой страны – свой флаг?
( Учащимся раздаются цветные полоски (белый, синий, красный) и предлагается составить разные варианты флагов ? (Слайд№4)
- Изучение нового материала .
Учитель: При решении этих задач мы осуществили перебор всех возможных вариантов,
или, как обычно говорят в этих случаях, всех возможных комбинаций. Поэтому подобные задачи называют комбинаторными. Просчитывать возможные (или невозможные) варианты в жизни приходится довольно часто, поэтому полезно познакомиться с комбинаторными задачами, а раздел математики, занимающийся решением этих задач, называется комбинаторикой. (Слайд№5)
Определение учащиеся записывают в тетрадь:
Комбинаторика – это раздел математики, посвященный решению задач выбора и расположения заданных элементов по заданным правилам
Обычный вопрос в комбинаторных задачах – это « Сколькими способами …?» или
Учитель : Давайте еще раз вернемся к задаче о флагах, решим ее используя перебор возможных вариантов: (слайд №7)
Ответ: 6 вариантов.
Итак, при решении этой задачи мы искали способ перебора возможных вариантов. Во
многих случаях оказывается полезным прием построения картинки – схемы перебора вариантов. Это, во – первых, наглядно , во- вторых, позволяет нам все учесть, ничего не пропустить.
Варианты БСК, БКС, СБК, СКБ, КБС, КСБ.
Ответ: 6 вариантов.
Вопрос, ответ на который должны знать все, какой из представленных вариантов флагов – государственный флаг РФ.(Слайд№7)
Оказывается, Не только флаг России имеет эти три цвета. Есть государства, флаги которых, имеют такие же цвета.
Учитель: Найдем правило решения таких задач путем логического рассуждения.
Разберем на примере цветных полосок. Возьмем белую полоску – её можно переставить 3 раза, возьмем синюю полоску – её можно переставить только 2 раза, т.к. одно из мест уже занято белой, возьмем красную полоску – её можно положить только 1 раз.
ИТОГО: 3 х 2 х 1=6
Основное правило произведения :
Правило умножения: если первый элемент в комбинации можно выбрать а способами, после чего второй элемент – b способами, то общее число комбинаций будет равно а х b . (слайд №8)
Физкультминутка для глаз. (слайд №9)
Нарисовать глазами квадрат, круг, треугольник, овал, ромб по часовой стрелке, а затем- против.
Учитель: А теперь перейдем к математическим задачам. (раздаем карточки с задачами)
- У одного довольно знаменитого мушкетера в гардеробе имеются 3 элегантных шляпы ,4 чудных плаща и 2 пары отличных сапог. Сколько вариантов костюма ему можно составить? (Выбираем по одному элементу из трех множеств, то есть, составляем «тройку», значит, по правилу умножения получаем 3 • 4 • 2 = 24 варианта костюма.)
- В футбольной команде 11 человек. Необходимо выбрать капитана и его заместителя. Сколькими способами можно это сделать? (Всего 11 человек, значит, капитана можно выбрать 11 способами, осталось 10 футболистов, из которых можно выбрать заместителя капитана. Итак, пару капитана и его заместителя можно выбрать 11 • 10 = 110 способами.)
- Сколько различных двузначных чисел можно составить, используя цифры 1, 4, 7, если допустить повторение цифр? (Должно получиться двузначное число – всего две позиции. На первую позицию можно поставить любую из предложенных цифр – 3 варианта выбора, на вторую позицию, с учетом возможности повтора цифры, тоже 3 варианта выбора. Значит, пару цифр мы составляем 3 • 3 = 9 способами, т.е. получится 9 чисел.
- Сколько различных трехзначных чисел можно составить из цифр 1, 2, 3, 4, 5 при условии, что ни одна цифра не повторяется? (Трехзначное число: первая позиция – 5 вариантов цифр, вторая позиция с учетом исключения повторов цифр — 4 варианта, третья позиция – 3 варианта. Получаем 5 • 4 • 3 = 60 чисел.)
- Сколько различных двузначных чисел можно составить из цифр 0, 1, 2, 3, если цифры: а) могут повторяться; б) не могут повторяться? ( а) Двузначное число, как и любое многозначное, не может начинаться с 0, поэтому на первую позицию можно поставить лишь 3 из имеющихся 4-х цифр, 3 варианта выбора, на вторую позицию, с учетом повтора, можно поставить любую из цифр – 4 варианта выбора. Поэтому получается 3 • 4 = 12 чисел; б) Первая позиция – 3 варианта, вторая позиция – 3 варианта, т.к. повтор исключается. Получаем 3 • 3 = 9 чисел.)
- Шифр для сейфа состоит из пяти различных цифр. Сколько различных вариантов составления шифра? (5 • 4 • 3 • 2 • 1 = 120 вариантов.) Сколькими способами можно разместить 6 человек за столом, на котором поставлено 6 приборов? (6 • 5 • 4 • 3 • 2 • 1 = 720 способов.)
- Сколькими способами можно разместить 6 человек за столом, на котором поставлено 6 приборов? (6 · 5 · 4 · 3 · 2 · 1 = 720 способов.)
- В пятом классе изучаются 8 предметов. Сколько различных вариантов расписания можно составить на понедельник, если в этот день должно быть 5 уроков и все уроки – разные? (8 · 7 · 6 · 5 · 4 = 6720 вариантов.)
- Сколько вариантов семизначных телефонных номеров можно составить, если исключить из них номера, начинающиеся с 0 и 9? (Используются цифры 0, 1, 2, 3, 4, 5, 6, 7, 8, 9 – всего 10 цифр, исключая по условию 0 и 9 в начале номера, с учетом возможности повтора, получаем 8 · 10 · 10 · 10 · 10 · 10 · 10 = 8 000 000 номеров.)
- Рефлексия
Учитель: Ребята вот и подходит к концу наш урок. Как вы считаете, мы сегодня достигли нашей цели, почему? Что было трудным на уроке, как с эти можно бороться? Подумайте и поставьте себе за свой труд и работу отметку, поставьте сами, эту отметку никто из ребят не увидит, попробуйте быть честным с самим собой. Полностью ли вы участвовали в работе на уроке? Что нужно сделать, чтобы результат был лучше?
Кроме того, ученикам предлагается ответить на 3 блиц — вопроса:
- На сегодняшнем уроке мне было … (легко, обычно, трудно)
- Новый материал я … (усвоил и могу применить, усвоил и затрудняюсь применить, не усвоил)
- Моя самооценка за урок …
Ответы на приведенные вопросы можно не подписывать, т.к. их основная функция помочь учителю проанализировать урок и его результаты
- Подведение итогов . Выставление отметок
7. Задание домашней работы :
1)Составить задачу о своем классе
2) Несколько стран решили использовать для своего государственного флага символику в виде 3 горизонтальных полос разной ширины, разных цветов – белый, синий, красный. Сколько стран могут использовать такую символику при условии ,что у каждой страны свой флаг?
3) а) Сколько двузначных чисел можно составить из цифр 1, 3, 5, 7, 9?
б) Сколько двузначных чисел можно составить из цифр 1, 3, 5, 7, 9 при условии, что цифры не должны повторяться
Учитель : Итак, я была рада встрече с вами, интересуйтесь математикой, это, несомненно, отразится в положительную сторону в ваших размышлениях и действиях. До свидания
Е.А.Бунимович, В.А. Булычев. Вероятность и статистика в курсе математики общеобразовательной школы: лекции 1- 4, 5 – 8. – М.: Педагогический университет “Первое сентября”, 2006.
Виленкин Н.Я. Математика. 5 класс: учебник для общеобразоват. учреждений/ Н.Я.Виленкин и др. – М. : Мнемозина, 2009.
Смыкалова Е.В. Дополнительные главы по математике для учащихся 5 класса. СПб: СМИО. Пресс, 2006.
5 класс. «Математика-5», И.И. Зубарева, А.Г. Мордкович, 2004 год.
- У одного довольно знаменитого мушкетера в гардеробе имеются 3 элегантных шляпы ,4 чудных плаща и 2 пары отличных сапог. Сколько вариантов костюма ему можно составить?
- В футбольной команде 11 человек. Необходимо выбрать капитана и его заместителя. Сколькими способами можно это сделать?
- Сколько различных двузначных чисел можно составить, используя цифры 1, 4, 7, если допустить повторение цифр
- Сколько различных трехзначных чисел можно составить из цифр 1, 2, 3, 4, 5 при условии, что ни одна цифра не повторяется?
- Сколько различных двузначных чисел можно составить из цифр 0, 1, 2, 3, если цифры: а) могут повторяться; б) не могут повторяться?
- Шифр для сейфа состоит из пяти различных цифр. Сколько различных вариантов составления шифра?
- Сколькими способами можно разместить 6 человек за столом, на котором поставлено 6 приборов?
- В пятом классе изучаются 8 предметов. Сколько различных вариантов расписания можно составить на понедельник, если в этот день должно быть 5 уроков и все уроки – разные?
- Сколько вариантов семизначных телефонных номеров можно составить, если исключить из них номера, начинающиеся с 0 и 9?
- Выбираем по одному элементу из трех множеств, то есть, составляем «тройку», значит, по правилу умножения получаем 3 • 4 • 2 = 24 варианта костюма.
- Всего 11 человек, значит, капитана можно выбрать 11-ю способами, осталось 10 футболистов, из которых можно выбрать заместителя капитана. Итак, пару, капитана и его заместителя, можно выбрать 11 • 10 = 110 способами.
- Должно получиться двузначное число – всего две позиции. На первую позицию можно поставить любую из предложенных цифр – 3 варианта выбора, на вторую позицию, с учетом возможности повтора цифры, тоже 3 варианта выбора. Значит, пару цифр мы составляем 3 • 3 = 9 способами, т.е. получится 9 чисел.
- Трехзначное число: первая позиция – 5 вариантов цифр, вторая позиция, с учетом исключения повторов цифр, — 4 варианта, третья позиция – 3 варианта. Получаем 5 • 4 • 3 = 60 чисел.
- ( а) Двузначное число, как и любое многозначное, не может начинаться с 0, поэтому на первую позицию можно поставить лишь 3 из имеющихся 4-х цифр, 3 варианта выбора, на вторую позицию, с учетом повтора, можно поставить любую из цифр – 4 варианта выбора. Поэтому получается 3 • 4 = 12 чисел; б) Первая позиция – 3 варианта, вторая позиция – 3 варианта, т.к. повтор исключается. Получаем 3 • 3 = 9 чисел.
- 5 • 4 • 3 • 2 • 1 = 120 вариантов.
- 6 • 5 • 4 • 3 • 2 • 1 = 720 способов
- 8 • 7 • 6 • 5 • 4 = 6720 вариантов
- Используются цифры 0, 1, 2, 3, 4, 5, 6, 7, 8, 9 – всего 10 цифр, исключая по условию 0 и 9 в начале номера, с учетом возможности повтора, получаем 8 • 10 • 10 • 10 • 10 • 10 • 10 = 8 000 000 номеров.
Источник