Сколькими способами можно расставить единиц чтобы две единицы не стояли рядом

Сколькими способами можно расставить n нулей и k единиц

Сколькими способами можно расставить 8 спортсменов
Доброй ночи! Задание: Сколькими способами можно расставить 8 спортсменов на 3 одинаковых дорожках.

Сколькими способами можно расставить конфеты?
Всем привет! Есть одна сложная задача на комбинаторику: Имеются конфеты трех типов.

Сколькими способами можно расставить книги?
Сколькими способами можно расставить на книжной полке подряд друг за другом книги десятитомного.

Сколькими способами можно расставить книги?
На книжной полке помещается 30 томов. Сколькими способами их можно расставить, чтобы при этом 1-й и.

Добавлено через 5 минут
Подробнее так.
Выписываем n нулей. Надо расставить в промежутках между ними k единиц. Всего мест для них n+1
Ошибочка моя. В самом деле

ЗЫ. Но успел поправиться

Сколькими способами можно расставить спортсменов?
Из группы в 12 человек выбирают 4-х участников эстафеты 800*400*200*100.Сколькими способами можно.

Сколькими способами можно расставить книги?
Помогите решить пожалуйста вот такую задачу На полку нужно установить 17 разных книг, из которых.

Сколькими способами можно расставить фишки на доске?
Сколькими способами можно расставить на доску с 16 квадратов а) 16 различных фишек, так чтобы.

Сколькими способами можно расставить учебные тревоги
Вы разрабатываете учебное расписание для военной части. Известно, что в месяце 30 дней, и в.

Сколькими способами можно расставить книги на полке?
Сколькими способами можно расставить на книжной полке 5 томов произведений А.П.Чехова,располагая их.

Сколькими способами можно расставить ладьи на доске?
Дима хочет расставить 8 ладей на шахматной доске 9×9 так, что никакие две ладьи не нападают друг на.

Источник

13. Перестановки с повторениями

При перестановке букв в слове «толпа» получается P5 = 5! = 120 «слов». Если же переставлять буквы в слове «топот», то получится меньше различных «слов», потому что ни перестановка двух букв «т», ни перестановка двух букв «о» не изменяют «слова»; всего перестановок в данном случае будет . Мы имеем здесь дело с перестановками с повторениями.

Общую задачу сформулируем следующим образом.

Имеется n элементов k различных типов: n1 элементов первого типа, n2 элементов второго типа, …, nk элементов k-го типа, . Сколько можно составить различных перестановок из этих элементов?

Число перестановок c повторениями обозначают . Сколько же их? Если бы все элементы были различны, то число перестановок равнялось бы n!. Но из-за того, что некоторые элементы совпадают, получится меньшее число перестановок. В первой группе элементы (первого типа) можно переставлять друг с другом n1! способами. Но так как все эти элементы одинаковы, то перестановки ничего не меняют. Точно также ничего не меняют n2! перестановок элементов во второй группе и т. д. Перестановки элементов в разных группах можно делать независимо друг от друга. Поэтому (из принципы умножения) элементы можно переставлять друг с другом способами так, что она остаётся неизменной.

Число различных перестановок с повторениями, которые можно составить из данных элементов, равно

, (11.1) где .

Замечание. Отметим, что формула числа сочетаний из n элементов по k элементов совпадает с формулой для числа перестановок с повторениями из k элементов одного типа и n–k элементов другого типа:

.

Пример 11.1. Сколькими способами можно нанизать на нить 4 зеленых, 5 синих и 6 красных бус?

Решение. Речь идет об отыскании числа перестановок с повторениями, которые можно сделать из k1=4 элементов первого типа (зеленых бус), k2=5 элементов второго типа (синих бус) и k3=6 элементов третьего типа (красных бус). По формуле (6) получаем

.

Пример 11.2. У мамы было 2 одинаковых яблока, 3 одинаковых груши и 4 одинаковых апельсина. Каждый день она давала ребенку по одному фрукту. Сколькими способами она могла это сделать?

Решение. Данная задача есть задача на отыскание числа перестановок с повторениями:

.

Пример 11.3. Сколько различных браслетов можно сделать из пять одинаковых изумрудов, шести одинаковых рубинов и семи одинаковых сапфиров (в браслет входят все 18 камней)?

Решение. Камни можно переставлять P(5, 6, 7) способами. При циклических перестановках и при зеркальном отражении браслет остается неизменным. В результате получаем

.

Пример 11.4. Сколько способами можно переставлять буквы слова «огород» так, чтобы: а) три буквы «о» не стояли рядом? б) если запрещается, чтобы две буквы «о» стояли рядом?

Решение. а) Буквы данного слова можно переставлять P(3,1,1,1) способами. Если три буквы «о» стоят рядом, то их можно считать за одну букву. Тогда буквы можно переставлять 4! Способами. Вычитая этот результат из предыдущего, получим

.

Б) Сначала расставляем согласные (3! способов). Для трёх букв «о» остаётся 4 места, и их можно расставить способами. Всего получаем способа.

11.1. Сколькими способами можно расположить в ряд две зелёные и четыре красные лампочки?

Ответ: .

11.2. Десять человек надо разбить на три группы соответственно по 2, 3, 5 человек в группе. Сколькими способами можно это сделать?

Ответ: .

11.3. Сколькими способами можно упаковать девять различных книг в трёх бандеролях соответственно по два три, четыре книги в каждой бандероли?

Ответ: .

11.4. Группу командировочных из восьми человек требуется расселить в три комнаты, из которых две трёхместные и одна двухместная. Сколько вариантов расселения возможно?

Ответ: .

11.5. Сколько различных слов можно получить, переставляя буквы в следующих исходных словах: а) академия, б) электротехника, в) молокопродукт?

Ответ: .

11.6. Сколькими способами можно разделить 12 предметов между тремя студентами, чтобы каждому досталось ровно по четыре предмета?

Ответ: .

11.7. Для премий на математической олимпиаде выделено 3 экземпляра одной книги, 4 экземпляра другой и 8 экземпляров третьей. Сколькими способами могут быть распределены эти премии между 30 участниками олимпиады, если каждому вручается не более одной книги?

Ответ: .

11.8. Сколькими способами можно переставить буквы слова «обороноспособность» так, чтобы две буквы «о» не шли подряд?

Ответ: .

11.9. Сколькими способами можно переставить буквы слова «каракули» так, чтобы никакие две гласные не стояли рядом?

Ответ: Гласные можно переставлять P(2,1,1)=12 способами, Аналогично, P(2,1,1)=12 способами можно расставить согласные буквы. Если согласные уже расставлены, то для гласных останется 5 мест. Поэтому места для них можно выбрать способами. Всего способов.

Источник

Формулы комбинаторики.

Прежде всего, разберем основные понятия комбинаторики — выборки и их типы: перестановки, размещения и сочетания. Знать их необходимо для решения большой части типовых задач ЕГЭ 2021 по математике обоих уровней, а также девятиклассникам для сдачи ОГЭ. Начнём с примера.

Перестановки. Подсчет числа перестановок.

Представьте себе, что вы избрали профессию, которая, казалось бы, ни каким образом не связана с математикой, например, дизайнер интерьеров. Представьте себе, что заказчик высказал вам просьбу:

Например, сначала оставляем на первом месте бордовый том, рядом с ним может находиться зеленый или оранжевый. Если на втором месте стоит зеленый том, то далее могут стоять либо оранжевый и синий, либо синий и оранжевый. Если на втором месте стоит оранжевый том, то далее могут стоять либо зеленый и синий, либо синий и зеленый. Итого, получается 4 возможных варианта.

На первом месте может стоять любой из 4-ёх томов, значит описанную процедуру надо повторить еще 3 раза. Случай, когда на первом месте стоит синий том, получается такими же рассуждениями.

Читайте также:  Радиосвязь способы организации радиосвязи

А следующие два случая отличаются тем, что на оставшихся трёх местах должны находиться бордовый и синий тома, но не рядом. Например, когда на первом месте стоит зеленый том, оранжевый том должен стоять на третьем месте, чтобы разделять бордовый и синий тома, которые могут занимать, соответственно, либо второе и четвертое места, либо четвертое и второе.

В результате у нас получилось всего 12 вариантов расстановки 4-ёх книг на полке с заданным ограничением. Много это или мало? Если потратить по одной минуте на перемещение книг и обсуждение получившегося варианта с заказчиком, то, пожалуй, нормально. 12 минут можно и книжки подвигать, и поговорить. (Попробуйте посчитать, сколько получилось бы перестановок 4-ёх книг без всяких ограничений?)

А теперь представьте себе, что у заказчика книг больше, чем 4. Ну хотя бы 5. Понятно, что и вариантов расстановки будет больше, и реально переставлять их с места на место дольше, и запутаться и начать повторяться легче. Значит бросаться в бой без подготовки уже не стоит. Нужно сначала запланировать варианты на бумаге. Для краткости занумеруем наши цветные тома и будем переставлять на бумаге их номера. Чтобы меньше ошибаться, сначала выпишем все варианты перестановки, а затем вычеркнем те из них, которые подпадают под ограничение. Итак:

У нас 5 книг (или 5 цифр), каждая из которых может стоять на первом месте. Сделаем для каждого из этих 5-ти случаев свою табличку. На втором месте может стоять любая из оставшихся 4-ёх цифр, для каждой из них зарезервируем столбик в табличке.



В каждом столбике помещаем пары строк, в которых на третьем месте стоит одна из оставшихся 3-ёх цифр, а две последние цифры меняются местами. Таким образом мы аккуратно выписываем все варианты перестановок. Подсчитаем их общее число.

5(таблиц)×4(столбика)×3(пары строк)×2(строки)×1(вариант) = 120 (вариантов).

И, наконец, вычеркнем из всех таблиц варианты, содержащие «12» или «21». Таких оказалось по 6 в первой и второй табличках и по 12 в оставшихся 3-ёх, всего 48 вариантов, не удовлетворяющих ограничению. Значит заказчику надо показать 120 − 48 = 72 варианта расположения 5-ти книг. На это уйдет больше часа, даже если тратить на обсуждение каждого варианта только минуту.

Только где вы видели человека, который для перестановки пяти книг станет нанимать дизайнера? Реально такие задачи возникают в библиотеках, где нужно расставить книги для удобства посетителей, в больших книжных магазинах, где нужно расставить книги так, чтобы обеспечить увеличение спроса, и т.п. То есть там, где книг не единицы, и даже не десятки, а сотни и тысячи.

Считать варианты перестановок приходится не только для книг. Это может потребоваться для большого числа любых объектов практически в любой сфере деятельности. Значит, как дизайнерам, так и людям других профессий может понадобиться помощник, а еще лучше инструмент для облегчения подготовительного этапа, анализа возможных результатов и сокращения объема непроизводительного труда. Такие инструменты создавали и создают ученые-математики, а затем отдают их обществу в виде готовых формул. Математики не обошли своим вниманием вопросы, связанные с перестановками, а также с размещениями и сочетаниями разных элементов. Соответствующим формулам уже не один век. Эти формулы очень просты, подрастающей части общества их «вручают» на уроках школьной математики. Поэтому всё, что было написано выше, это по-существу, «изобретение велосипеда», к которому пришлось прибегнуть из-за предположения, что дизайнеру интерьеров никогда не понадобится математика. Что ж, откажемся от этого предположения. Повторим математические понятия, а затем снова вернемся к задаче о книжной полке.

Комбинаторикой называется область математики, в которой изучаются вопросы о том, сколько различных комбинаций, подчиненных тем или иным условиям, можно составить из элементов заданного множества. Составляя комбинации, мы фактически выбираем из этого множества различные элементы и объединяем их в группы по нашим потребностям, поэтому вместо слова «комбинации», часто используют слово «выборки» элементов.

Формула для числа перестановок.

Перестановками называются такие выборки элементов, которые отличаются только порядком расположения элементов, но не самими элементами.

Если перестановки производятся на множестве из n элементов, их число определяется по формуле
Pn = n·(n−1)·(n−2). 3·2·1 = n!

n! — обозначение, которое используют для краткой записи произведения всех натуральных чисел от 1 до n включительно и называют «n-факториал» (в переводе с английского «factor» — «множитель»).

Таким образом, общее число перестановок 5-ти книг P5 = 5! = 1·2·3·4·5 = 120, что мы и получили выше. Фактически мы выводили эту формулу для маленького примера. Теперь решим пример побольше.

Задача 1.

На книжной полке помещается 30 томов. Сколькими способами их можно расставить, чтобы при этом 1-й и 2-й тома не стояли рядом?

Решение.

Определим общее число перестановок из 30 элементов по формуле P30=30!
Чтобы вычислить число «лишних» перестановок, сначала определим, сколько вариантов, в которых 2-й том находится рядом с 1-ым справа от него. В таких перестановках 1-ый том может занимать места с первого по 29-е, а 2-й со второго по 30-е — всего 29 мест для этой пары книг. И при каждом таком положении первых двух томов остальные 28 книг могут занимать остальные 28 мест в произвольном порядке. Вариантов перестановки 28 книг P28=28! Всего «лишних» вариантов при расположении 2-го тома справа от 1-го получится 29·28! = 29!.
Аналогично рассмотрим случай, когда 2-й том расположен рядом с 1-ым, но слева от него. Получается такое же число вариантов 29·28! = 29!.
Значит всего «лишних» перестановок 2·29!, а нужных способов расстановки 30!−2·29! Вычислим это значение.
30! = 29!·30; 30!−2·29! = 29!·(30−2) = 29!·28.
Итак, нам нужно перемножить все натуральные числа от 1 до 29 и еще раз умножить на 28.
Ответ: 2,4757335·10 32 .

Это очень большое число (после двойки еще 32 цифры). Даже если затратить секунду на каждую перестановку, то потребуются миллиарды лет. Стоит ли выполнять такое требование заказчика, или лучше уметь обоснованно возразить ему и настоять на применении дополнительных ограничений?

Перестановки и теория вероятностей.

Еще чаще необходимость подсчёта числа вариантов возникает в теории вероятностей. Продолжим книжную тему следующей задачей.

Задача 2.

На книжной полке стояло 30 томов. Ребенок уронил книги с полки, а затем расставил их в случайном порядке. Какова вероятность того, что он не поставил 1-й и 2-й тома рядом?

Решение.

Сначала определим вероятность события А, состоящего в том, что ребенок поставил 1-й и 2-й тома рядом.
Элементарное событие — некая расстановка книг на полке. Понятно, что общее число всех элементарных событий будет равно общему числу всех возможных перестановок P30=30!.
Число элементарных событий, благоприятствующих событию А, равно числу перестановок, в которых 1-й и 2-й тома стоят рядом. Мы рассматривали такие перестановки, решая предыдущую задачу, и получили 2·29! перестановок.
Вероятность определяем делением числа благоприятствующих элементарных событий на число всех возможных элементарных событий:
P(A) = 2·29!/30! = 2·29!/(29!·30) = 2/30 = 1/15.
Событие В — ребенок не поставил 1-й и 2-й тома рядом — противоположно событию A, значит его вероятность P(B) = 1 − P(A) = 1−1/15 = 14/15 = 0,9333
Ответ: 0,9333.

Замечаниe: Если непонятно, как сокращаются дроби с факториалами, то вспомните, что факториал это краткая запись произведения. Её всегда можно расписать длинно и зачеркнуть повторяющиеся множители в числителе и в знаменателе.

В ответе получилось число близкое к единице, это означает, что при таком количестве книг случайно поставить два заданных тома рядом сложнее, чем не поставить.

Размещения. Подсчет числа размещений.

Теперь предположим, что у заказчика много книг и невозможно разместить их все на открытых полках. Его просьба состоит в том, что нужно выбрать определенное количество каких-либо книг и разместить их красиво. Красиво получилось или некрасиво это вопрос вкуса заказчика, т.е. он опять хочет посмотреть все варианты и принять решение сам. Наша задача состоит в том, чтобы посчитать количество всех возможных вариантов размещения книг, обоснованно переубедить его и ввести разумные ограничения.

Чтобы разобраться в ситуации, давайте сначала считать, что «много» — это 5 книг, что у нас всего одна полка, и что на ней вмещается лишь 3 тома. Что мы будем делать?
Выбираем одну из 5-ти книг и ставим на первое место на полке. Это мы можем сделать 5-ю способами. Теперь на полке осталось два места и у нас осталось 4 книги. Вторую книгу мы можем выбрать 4-мя способами и поставить рядом с одной из 5-ти возможных первых. Таких пар может быть 5·4. Осталось 3 книги и одно место. Одну книгу из 3-ёх можно выбрать 3-мя способами и поставить рядом с одной из возможных 5·4 пар. Получится 5·4·3 разнообразных троек. Значит всего способов разместить 3 книги из 5-ти 5·4·3 = 60.

На рисунке представлены только 4 варианта размещения из 60 возможных. Сравните картинки. Обратите внимание, что размещения могут отличаться друг от друга либо только порядком следования элементов, как первые две группы, либо составом элементов, как следующие.

Формула для числа размещений.

Размещениями из n элементов по m (мест) называются такие выборки, которые имея по m элементов, выбранных из числа данных n элементов, отличаются одна от другой либо составом элементов, либо порядком их расположения.

Число размещений из n по m обозначается An m и определяется по формуле
An m = n·(n − 1)·(n − 2)·. ·(nm + 1) = n!/(n − m)!

Ничего удивительного в том, что число размещений из n по n оказалось равным числу перестановок n элементов, ведь мы использовали для составления размещений всё множество элементов, а значит они уже не могут отличаться друг от друга составом элементов, только порядком их расположения, а это и есть перестановки.

Задача 3.

Сколькими способами можно расставить 15 томов на книжной полке, если выбирать их из имеющихся в наличии 30-ти книг?

Решение.

Определим общее число размещений из 30 элементов по 15 по формуле
A30 15 = 30·29·28·. ·(30−15+1) = 30·29·28·. ·16 = 202843204931727360000.
Ответ: 202843204931727360000.

Будете размещать реальные книги? Удачи! Посчитайте, сколько жизней потребуется, чтобы перебрать все варианты.

Задача 4.

Сколькими способами можно расставить 30 книг на двух полках, если на каждой из них помещается только по 15 томов?

Решение.

Способ I.
Представим себе, что первую полку мы заполняем так же, как в предыдущей задаче. Тогда вариантов размещения из 30-ти книг по 15 будет A30 15 = 30·29·28·. ·(30−15+1) = 30·29·28·. ·16.
И при каждом размещении книг на первой полке мы еще P15 = 15! способами можем расставить книги на второй полке. Ведь для второй полки у нас осталось 15 книг на 15 мест, т.е. возможны только перестановки.
Всего способов будет A30 15 ·P15, при этом произведение всех чисел от 30 до 16 еще нужно будет умножить на произведение всех чисел от 1 до 15, получится произведение всех натуральных чисел от 1 до 30, т.е. 30!
Способ II.
Теперь представим себе, что у нас была одна длинная полка на 30 мест. Мы расставили на ней все 30 книг, а затем распилили полку на две равные части, чтобы удовлетворить условию задачи. Сколько вариантов расстановки могло быть? Столько, сколько можно сделать перестановок из 30 книг, т.е. P30 = 30!
Ответ: 30!.

Не важно, как вы решаете математическую задачу. Вы её решаете так, как представляете себе свои действия в жизненной ситуации. Важно не отступать от логики в своих рассуждениях, чтобы в любом случае получить верный ответ.

Размещения и теория вероятностей.

В теории вероятностей задачи на размещения встречаются несколько реже, чем задачи на другие типы выборок, поскольку размещения имеют больше опознавательных признаков — и порядок, и состав элементов, а значит меньше подвержены случайному выбору.

Задача 5.

На книжной полке находится собрание сочинений одного автора в 6 томах. Книги одинакового формата расположены в произвольном порядке. Читатель, не глядя, берет 3 книги. Какова вероятность того, что он взял первые три тома?

Решение.

Событие A — у читателя первые три тома. С учетом порядка выбора он мог взять их 6-ю способами. (Это перестановки из 3-ёх элементов P3 = 3! = 1·2·3 = 6, которые легко перечислить 123, 132, 213, 231, 312, 321.)
Таким образом, число благоприятствующих элементарных событий равняется 6.
Общее число возможных элементарных событий равно числу размещений из 6-ти по 3, т.е. A6 3 = 6·. ·(6−3+1) = 6·5·4 = 120.
P(A) = 6/120 = 1/20 = 0,05.
Ответ: 0,05.

Сочетания. Подсчет числа сочетаний.

И последний случай — все книги заказчика одного цвета и одного размера, но на полке помещается лишь часть из них. Казалось бы проблем у дизайнера нет совсем, выбирай столько книг из общего числа, сколько нужно, и расставляй их на полке в произвольном порядке, ведь книги внешне неразличимы. Но они различаются, и существенно! Эти книги разные по содержанию. И заказчику, возможно, не всё равно, где находятся трагедии Шекспира, а где детективы Рекса Стаута, на открытой полке или в шкафу. Таким образом, у нас возникает ситуация, когда важен состав элементов выборки, но несущественен порядок их расположения.

На рисунке показаны две выборки из «собрания сочинений одного автора в 5 томах». Первая больше понравится заказчику, если он чаще перечитывает ранние произведения этого автора, помещенные в первых трёх томах, вторая — если чаще обращается к поздним произведениям, помещенным в последних томах. Смотрятся обе группы одинаково красиво (или одинаково некрасиво) и неважно, будет ли группа расположена как 123 или как 321.

Формула для числа сочетаний.

Неупорядоченные выборки называются сочетаниями из n элементов по m и обозначаются Сn m .
Число сочетаний определяется по формуле Сn m = n!/(n − m)!/m!

В этой формуле присутствуют два делителя и в качестве знака деления использован символ «/«, который более удобен для веб-страницы. Но деление можно также обозначать двоеточием «:» или горизонтальной чертой «−−−». В последнем случае формула выглядит как обыкновенная дробь, в которой последовательное деление представлено двумя сомножителями в знаменателе . Для тех, кому более понятно представление в виде дроби, все формулы продублированы в начале и в самом конце страницы. Разбирая решения задач сравнивайте мою запись с привычной для себя.
Кроме того, все множители и делители в этой формуле представляют собой произведения последовательных натуральных чисел, поэтому дробь хорошо сокращается, если её расписать подробно. Но подробное сокращение я в задачах пропускаю, его легко проверить самостоятельно.

Понятно, что для одинаковых исходных множеств из n элементов и одинаковых объёмов выборок (по m элементов) число сочетаний должно быть меньше, чем число размещений. Ведь при подсчёте размещений для каждой выбранной группы мы еще учитываем все перестановки выбранных m элементов, а при подсчёте сочетаний перестановки не учитываем: Сn m = An m /Pm = n!/(n−m)!/m!

Задача 6.

Сколькими способами можно расставить 15 томов на книжной полке, если выбирать их из имеющихся в наличии внешне неразличимых 30-ти книг?

Решение.

Мы решаем эту задачу в контексте работы дизайнера интерьеров, поэтому порядок следования на полке 15-ти выбранных внешне одинаковых книг не имеет значения. Нужно определить общее число сочетаний из 30 элементов по 15 по формуле
С30 15 = 30!/(30 − 15)!/15! = 155117520.
Ответ: 155117520.

Задача 7.

Сколькими способами можно расставить 30 внешне неразличимых книг на двух полках, если на каждой из них помещается только по 15 томов?

Итак, бывают такие формулировки задач, что ответы могут получаться неоднозначными. Для точного решения нужна дополнительная информация, которую мы обычно получаем из контекста ситуации. Создатели экзаменационных заданий, как правило, не допускают двойного толкования условия задачи, формулируют его несколько длиннее. Однако, если у вас есть сомнения, лучше обратиться с вопросом к преподавателю.

Сочетания и теория вероятностей.

В теории вероятностей задачи на сочетания встречаются чаще всего, потому что группировка без порядка следования важнее именно для неразличимых элементов. Если какие-то элементы существенно различаются между собой, их трудно выбрать случайно, есть ориентиры для неслучайного выбора.

Задача 8.

На книжной полке находится собрание сочинений одного автора в 6 томах. Книги одинаково оформлены и расположены в произвольном порядке. Читатель берет наугад 3 книги. Какова вероятность того, что он взял первые три тома?

Решение.

Событие A — у читателя первые три тома. Это 1-й, 2-й и 3-й тома. Без учета порядка, в котором он выбирал книги, а только по конечному результату, он мог взять их одним способом. Число благоприятствующих элементарных событий — 1.
Общее число возможных элементарных событий равно числу групп из 6-ти по 3, образованных без учета порядка следования элементов в группе, т.е. равно числу сочетаний С6 3 = 6!/3!/(6 — 3)! = 4·5·6/(1·2·3) = 4·5 = 20.
P(A) = 1/20 = 0,05.
Ответ: 0,05.

Сравните эту задачу с задачей 5 (на размещения). В обоих задачах очень похожие условия и совсем одинаковые ответы. По-существу, это просто одна и та же бытовая ситуация и, соответственно, одна и та же задача, которую можно трактовать так или иначе. Главное, чтобы при подсчёте элементарных событий, как благоприятствующих, так и всех возможных, было одно и то же понимание ситуации.

Заключительные замечания.

Мы рассмотрели выборки для множества, в котором элементы не повторяются, так называемые выборки без повторений. Например, перестановки букв в слове «шляпа». Но ведь и слово «берет» нередко встречается. В этом слове от перестановки местами двух букв «е» ничего не изменится, такая перестановка не влияет на общее число всех вариантов. Понятно, что математики тоже не прошли мимо понятия выборки с повторениями и вывели соответствующие формулы для подсчёта числа вариантов. Вы можете найти их в учебниках и справочниках или посмотреть в комментариях к простым задачам здесь.

Для строгого вывода всех формул (который я здесь не приводила) используются два основных правила комбинаторики:

Понятие факториал также распространяется на ноль: 0! = 1, так как считается, что пустое множество можно упорядочить единственным способом.

Вычислять факториалы больших чисел прямым умножением на калькуляторе очень долго, а очень больших чисел — и на компьютере не быстро. А как же справлялись с этим до создания компьютеров и калькуляторов? Еще в начале 18-го века Дж.Стирлингом и независимо от него А.Муавром была получена формула для приближенного вычисления факториалов, которая тем точнее, чем больше число n. Сейчас эта формула называется формулой Стирлинга:

Заключительная задача.

При решении задач по теории вероятностей с применением методов комбинаторики необходимо тщательно анализировать предлагаемую ситуацию, чтобы правильно выбрать тип выборки. Попробуйте сделать это на примере следующей задачи. Решите её, сравните ответ, а затем нажмите кнопку, чтобы открыть моё решение.

Задача 9.

Из аквариума, в котором 6 сазанов и 4 карпа, сачком выловили 5 рыб. Какова вероятность того, что среди них окажется 2 сазана и 3 карпа?

Решение.

Элементарное событие — «в сачке группа из 5 рыб». Событие A — «среди 5 пойманных рыб оказалось 3 карпа и 2 сазана».
Пусть n — общее число всех возможных элементарных событий, оно равно числу способов сгруппировать по 5 рыб. Всего рыб в аквариуме 6 + 4 = 10. В процессе ловли сачком рыбы внешне неразличимы. (Мы не знаем, выловили ли мы рыбу по имени Баська или по имени Коська. Более того, пока мы не вытащили сачок наверх и не заглянули в него, мы даже не знаем сазан это или карп.) Таким образом, «выловить 5 рыб из 10» означает сделать выборку типа сочетания из 10 по 5.
n = С10 5 = 10!/5!/(10 — 5)!
Вытащив сачок и заглянув в него, мы можем определить благоприятствующий это исход или нет, т.е. состоит ли улов из двух групп — 2 сазана и 3 карпа?
Группа сазанов могла сформироваться выбором из 6 сазанов по 2. Причем всё равно, кто из них первым забрался в сачок, а кто вторым, т.о. это выборка типа сочетания из 6 по 2. Обозначим общее число таких выборок m1 и вычислим его.
m1 = С6 2 = 6!/2!/(6 — 2)!
Аналогично общее число возможных групп по 3 карпа определяется числом сочетаний из 4 по 3. Обозначим его m2.
m2 = С4 3 = 4!/3!/(4 — 3)!
Группы карпов и сазанов формируются в сачке независимо друг от друга, поэтому для подсчёта числа элементарных событий, благоприятствующих событию A, используем правило умножения («и»-правило) комбинаторики. Итак, общее число благоприятствующих элементарных событий
m = m1·m2 = С6 2 ·С4 3
Вероятность события А определяем по формуле P(A) = m/n = С6 2 ·С4 3 /С10 5
Подставляем в эту формулу все значения, расписываем факториалы, сокращаем дробь и получаем ответ:
P(A) = 6!·4!·5!·(10 — 5)!/2!/(6 — 2)!/3!/(4 — 3)!/ 10! = 5/21 ≈ 0,238

Замечания.
1) Сочетания обычно встречаются в задачах, где неважен процесс формирования группы, а важен только результат. Сазану Баське без разницы первым он попал в сачок или последним, но ему очень важно, в какой группе он оказался в итоге — среди тех, кто в сачке, или среди тех, кто на свободе.
2) Обратите внимание, мы используем «и-правило», потому что союз «и» стоит непосредственно в описании события А, для которого нужно вычислить вероятность совместного улова двух групп. Однако, применяем его только после того, как убедились в независимости выборок. В самом деле, не может же сазан, подплывая к сачку, пересчитать там своих собратьев, и сказать карпу: «Твоя очередь, наших там уже двое». Да и согласится ли карп лезть в сачок в угоду сазану? Но если бы они могли договориться, то это правило применять было бы уже нельзя. Надо было бы обратиться к понятию условная вероятность.

Ответ: 0,238.

Если вы выпускник школы и будете сдавать ЕГЭ, то после изучения этого раздела, вернитесь к заданиям по теме «Вероятность» (10 для базового и 4 для профильного уровней ЕГЭ 2021 по математике), которые можно решать с использованием элементов комбинаторики и без неё (например, на бросание монеты). Какой из возможных способов решения задачи нравится вам больше теперь?

А если вы хотите еще немного потренироваться в решении задач комбинаторики, чтобы научиться быстро определять тип выборки и находить нужные формулы, то перейдите на страницу простые задачи.

Перейти на главную страницу сайта.

Понравились материалы сайта? Узнайте, как поддержать сайт и помочь его развитию.

Есть вопросы? пожелания? замечания?
Обращайтесь — mathematichka@yandex.ru

Внимание, ©mathematichka. Прямое копирование материалов на других сайтах запрещено. Ставьте гиперссылку.

Источник

Оцените статью
Разные способы