Сколькими способами можно подобрать пару браслетов если всего имеется 7 браслетов
а) Цвет верхней полосы можно выбрать шестью способами. При каждом способе такого выбора остаётся по пять способов выбрать цвет средней полосы (чтобы он не совпадал с цветом верхней полосы). Наконец, при каждом способе выбора цветов верхней и средней полос остаётся по четыре способа выбрать цвет для нижней полосы (чтобы он не совпадал с цветами первых двух полос). Итого получаем 6·5·4 = 120 способов.
б) Сначала выберем, какая из трёх полос флага будет красной (это можно сделать тремя способами). После этого неокрашенными останутся ещё две полосы. Для той из них, которая расположена выше, есть пять способов выбрать цвет (можно использовать любой из имеющихся цветов, кроме красного). После этого для оставшейся полосы есть четыре способа выбрать цвет (любой, кроме красного и использованного для предыдущей полосы). Итого получаем 3·5·4 = 60 способов.
в) Сначала посчитаем количество флагов, в которых используется строго меньше трёх цветов. Одноцветным такой флаг быть не может (иначе три одноцветные полосы шли бы подряд, а это запрещено условием). Значит, он может быть только двухцветным, причём верхняя и нижняя полоса должны быть покрашены в один и тот же цвет, а средняя — в другой. Покрасить верхнюю и нижнюю полосы можно шестью разными способами, после этого среднюю полосу можно покрасить (в другой цвет) пятью способами. Итого получаем 6·5 = 30 флагов, в которых используется строго меньше трёх цветов. А теперь к этому числу надо добавить число трёхцветных флагов, которое мы нашли в пункте а). Итого получим 120 + 30 = 150 флагов.
Посчитаем отдельно количество способов собрать портфель, взяв 2, 3 и 4 учебника соответственно, а затем сложим эти три числа.
Если Вовочка берёт ровно два учебника, то он берёт 4 книги про Гарри Поттера. Число способов выбрать два учебника из четырёх равно C4 2 = 4·3 : 2 = 6 (вспомните предыдущее занятие). А число способов выбрать четыре книги про Гарри Поттера из семи равно C7 4 = C7 3 = 7·6·5 : (3·2·1) = 35 (здесь мы воспользовались результатами первых двух задач предыдущего занятия). Значит, число способов положить в портфель два учебника и четыре книги про Гарри Поттера равно 6·35 = 210.
Аналогично считается количество способов положить в портфель три учебника и три книги про Гарри Поттера (оно равно C4 3 ·C7 3 = C4 1 ·C7 3 = 4· 35 = 140) и количество спобов положить в портфель четыре учебника и две книги про Гарри Поттера (оно равно C4 4 ·C7 2 = 1· 7·6 : 2 = 21).
Итого у Вовочки есть C4 2 · C7 4 + C4 3 · C7 3 + C4 4 · C7 2 = 210 + 140 + 21 = 371 способ собрать портфель.
Сначала будем выбирать количество используемых пятирублёвых монет, затем — количество используемых двухрублёвых монет, а оставшуюся сумму (если она ещё ненулевая) будем добирать рублёвыми монетами.
а) Если использовать четыре пятёрки, то другие монеты уже не нужны, и получаем один способ. Если использовать три пятёрки, то останется добрать ещё 20 − 5·3 = 5 рублей, и можно использовать 0, 1 или 2 двойки (3 двойки — это уже 6 рублей, то есть слишком много) — ещё три способа. Если использовать две пятёрки, то останется добрать ещё 20 − 5·2 = 10 рублей, и можно использовать от 0 до 5 двоек — ещё 6 способов. Если использовать одну пятёрку, то останется добрать ещё 20 − 5·1 = 15 рублей, и можно использовать от 0 до 7 двоек — ещё 8 способов. Наконец, если пятёрки вообще не использовать, то двоек можно использовать от 0 до 10 — ещё 11 вариантов. Итого получим 1+3+6+8+11 = 29 вариантов.
б) Рассуждая аналогично предыдущему пункту, получим сумму 1 + 3 + 6 + 8 + . + 93 + 96 + 98 + 101 = (1 + 6 + 11 + . + 96 + 101) + (3 + 8 + 13 + . + 93 + 98) = 1071 + 1010 = 2081. (О том, как легко посчитать такие суммы, можно прочесть в решениях задач прошлогоднего занятия по теме «Последовательности» для 6 класса: ).
Источник
Сколькими способами из 7 бусенок разных цветов можно составить ожерелье с застёжкой?Объясните почему
Ответ или решение 1
Бусинок всего 7, они разных цветов и использовать их можно в каждой комбинации только однократно. Если бусы состоят из 7 бусинок, то мест для бусин 7 и при выборе каждой следующей бусины, их количество сокращается. Следовательно:
На 1-м месте возможны все 7 бусин;
На 2-м месте возможны 6 бусин из 6-ти оставшихся (7-ю мы уже использовали);
На 3-м месте возможны 5 бусин;
И т.д., пока бусины не закончатся, на последнем месте выбор будет только из 1 бусины.
Количество комбинаций определяется произведением количества выборов бусин на каждом месте:
7 * 6 * 5 * 4 * 3 * 2 * 1 = 7! = 5 040.
Ответ: для бус из 7 бусин количество комбинаций 5 040.
Но если бусин в комбинациях может быть меньше, чем 7, то есть бусы могут состоять из 7, 6, 5, 4, 3, 2 или 1 бусинок, то количество комбинаций определяется сложением всех возможных комбинаций для каждого набора бус (для 7, для 6 и т.д.):
Для бус из 7 бусин количество комбинаций посчитано:
Для бус из 6-ти бусин количество комбинаций будет такое же, так как мест 6, на 1-м месте возможны 7 бусин, на 2-м 6 бусин, . на последнем 6-м месте будет выбор из 2-х бусин:
7 * 6 * 5 * 4 * 3 * 2 = 5 040.
Здесь уместно пользоваться формулой числа размещений без повторов:
А 6 7 = 7! / (7 – 6)! = 7! / 1! = 5 040.
Тогда для 5-ти бусин (на 1-м месте 7 бусин, на 5-м месте 3 бусины) расчет такой:
А 5 7 = 7! / (7 – 5)! = 7! / 2! = 2 520.
А 4 7 = 7! / (7 – 4)! = 7! / 3! = 840.
А 3 7 = 7! / (7 – 3)! = 7! / 4! = 210.
А 2 7 = 7! / (7 – 2)! = 7! / 5! = 42.
Для 1 бусины комбинаций всего 7.
Общее число комбинаций при меняющемся числе бусин на бусах:
5040 + 5040 + 2520 + 840 + 210 + 42 + 7 = 13699.
Источник
КОМБИНАТОРИКА
Комбинаторика – раздел математики, который изучает задачи выбора и расположения элементов из некоторого основного множества в соответствии с заданными правилами. Формулы и принципы комбинаторики используются в теории вероятностей для подсчета вероятности случайных событий и, соответственно, получения законов распределения случайных величин. Это, в свою очередь, позволяет исследовать закономерности массовых случайных явлений, что является весьма важным для правильного понимания статистических закономерностей, проявляющихся в природе и технике.
Правила сложения и умножения в комбинаторике
Правило суммы. Если два действия А и В взаимно исключают друг друга, причем действие А можно выполнить m способами, а В – n способами, то выполнить одно любое из этих действий (либо А, либо В) можно n + m способами.
Пример 1.
В классе учится 16 мальчиков и 10 девочек. Сколькими способами можно назначить одного дежурного?
Дежурным можно назначить либо мальчика, либо девочку, т.е. дежурным может быть любой из 16 мальчиков, либо любая из 10 девочек.
По правилу суммы получаем, что одного дежурного можно назначить 16+10=26 способами.
Правило произведения. Пусть требуется выполнить последовательно k действий. Если первое действие можно выполнить n1 способами, второе действие n2 способами, третье – n3 способами и так до k-го действия, которое можно выполнить nk способами, то все k действий вместе могут быть выполнены:
Пример 2.
В классе учится 16 мальчиков и 10 девочек. Сколькими способами можно назначить двух дежурных?
Первым дежурным можно назначить либо мальчика, либо девочку. Т.к. в классе учится 16 мальчиков и 10 девочек, то назначить первого дежурного можно 16+10=26 способами.
После того, как мы выбрали первого дежурного, второго мы можем выбрать из оставшихся 25 человек, т.е. 25-ю способами.
По теореме умножения двое дежурных могут быть выбраны 26*25=650 способами.
Сочетания без повторений. Сочетания с повторениями
Классической задачей комбинаторики является задача о числе сочетаний без повторений, содержание которой можно выразить вопросом: сколькими способами можно выбрать m из n различных предметов ?
Пример 3.
Необходимо выбрать в подарок 4 из 10 имеющихся различных книг. Сколькими способами можно это сделать?
Нам из 10 книг нужно выбрать 4, причем порядок выбора не имеет значения. Таким образом, нужно найти число сочетаний из 10 элементов по 4:
.
Рассмотрим задачу о числе сочетаний с повторениями: имеется по r одинаковых предметов каждого из n различных типов; сколькими способами можно выбрать m () из этих (n*r) предметов?
.
Пример 4.
В кондитерском магазине продавались 4 сорта пирожных: наполеоны, эклеры, песочные и слоеные. Сколькими способами можно купить 7 пирожных?
Т.к. среди 7 пирожных могут быть пирожные одного сорта, то число способов, которыми можно купить 7 пирожных, определяется числом сочетаний с повторениями из 7 по 4.
.
Размещения без повторений. Размещения с повторениями
Классической задачей комбинаторики является задача о числе размещений без повторений, содержание которой можно выразить вопросом: сколькими способами можно выбрать и разместить по m различным местам m из n различных предметов?
Пример 5.
В некоторой газете 12 страниц. Необходимо на страницах этой газеты поместить четыре фотографии. Сколькими способами можно это сделать, если ни одна страница газеты не должна содержать более одной фотографии?
В данной задаче мы не просто выбираем фотографии, а размещаем их на определенных страницах газеты, причем каждая страница газеты должна содержать не более одной фотографии. Таким образом, задача сводится к классической задаче об определении числа размещений без повторений из 12 элементов по 4 элемента:
Таким образом, 4 фотографии на 12 страницах можно расположить 11880 способами.
Также классической задачей комбинаторики является задача о числе размещений с повторениями, содержание которой можно выразить вопросом: сколькими способами можно выбрать и разместить по m различным местам m из n предметов, среди которых есть одинаковые?
Пример 6.
У мальчика остались от набора для настольной игры штампы с цифрами 1, 3 и 7. Он решил с помощью этих штампов нанести на все книги пятизначные номера– составить каталог. Сколько различных пятизначных номеров может составить мальчик?
Можно считать, что опыт состоит в 5-кратном выборе с возращением одной из 3 цифр (1, 3, 7). Таким образом, число пятизначных номеров определяется числом размещений с повторениями из 3 элементов по 5:
.
Перестановки без повторений. Перестановки с повторениями
Классической задачей комбинаторики является задача о числе перестановок без повторения, содержание которой можно выразить вопросом: сколькими способами можно разместить n различных предметов на n различных местах?
Пример 7.
Сколько можно составить четырехбуквенных «слов» из букв слова«брак»?
Генеральной совокупностью являются 4 буквы слова «брак» (б, р, а, к). Число «слов» определяется перестановками этих 4 букв, т. е.
Для случая, когда среди выбираемых n элементов есть одинаковые (выборка с возвращением), задачу о числе перестановок с повторениями можно выразить вопросом: сколькими способами можно переставить n предметов, расположенных на n различных местах, если среди n предметов имеются k различных типов (k
Пример 8.
Сколько разных буквосочетаний можно сделать из букв слова «Миссисипи»?
Здесь 1 буква «м», 4 буквы «и», 3 буквы «c» и 1 буква «п», всего 9 букв. Следовательно, число перестановок с повторениями равно
ОПОРНЫЙ КОНСПЕКТ ПО РАЗДЕЛУ «КОМБИНАТОРИКА»
Источник
Практическое занятие на тему «Основные комбинаторные конфигурации»
Практическое занятие (2ч.)
Тема: Основные комбинаторные конфигурации .
научить применять комбинаторные конфигурации при решении задач;
сформировать умение находить нужную комбинаторную формулу при решении задачи;
формирование самостоятельности студента на занятии.
Математика / приложение к газете «Первое сентября», №15, 2004 г.
Стойлова Л.П. Математика.-М.: Изд. Центр Академия, 1997.
Прикладная комбинаторная математика.
Вариативная самостоятельная работа.
Повторение основных формул необходимых при решении комбинаторных задач.
Размещения с повторениями.
Задача 1. Сколько различных четырехзначных чи сел можно составить из цифр 2, 6, 7, 8 и 9, если каждая цифра может входить в комбинацию несколько раз?
Решение. Здесь порядок цифр существенен (2678 или 6278 — это разные числа). Поэтому имеем дело с кортежем длины 4 (четырехзначное число), каждый элемент которого можно выбрать пятью способами (цифр дано пять). Поэтому число различных комби наций равно 4 5 = 1024.
Задача 2. На референдуме предложены четыре вопроса, на которые надо ответить «да» или «нет». Сколько есть возможностей заполнения бюллетеня (на все вопросы надо дать ответ)?
Решение. Получаем кортеж длины 4 (столько во просов в бюллетене), каждый элемент может быть вы бран двумя способами («да» или «нет»). Поэтому число различных возможностей равно 2 4 =16.
Задача 3 . Неудовлетворенные решением Париса Гера, Афина и Афродита обратились к трем мудре цам с просьбой назвать прекраснейшую из них. Каж дый из мудрецов высказал свое мнение. Сколько мог ло возникнуть вариантов ответа на поставленный во прос у этой тройки?
Решение. Здесь вновь кортеж длиной 3 (три муд реца), каждый элемент которого может быть выбран шестью способами. Поэтому число различных возмож ностей равно 6 3 = 216.
Задача 4 . У Лены есть восемь красок. Она хочет написать ими слова «Новый Год». Сколькими спосо бами она может это сделать, если собирается каждую букву раскрашивать одним цветом?
Решение . Кортеж длиной 8 (восемь букв), каждый элемент может быть выбран восемью способами (во семь красок). Поэтому число способов равно 8 8 .
Задача 5. На железнодорожной станции имеется я семафоров. Сколько может быть дано различных сигналов при помощи этих семафоров, если каждый семафор имеет три состояния: горит либо зеленый, либо желтый, либо красный свет.
Решение. Имеем кортеж длины n (дано n семафо ров), каждый элемент которого можно выбрать тре мя способами (каждый семафор имеет три состояния). Поэтому различных сигналов можно дать 3 n .
Задачи для домашней работы
Сколько букв русского алфавита можно зако дировать, используя лишь комбинации точек и тире, содержащие только три знака?
Переплетчик должен переплести 12 различных книг в красный, зеленый и коричневый переплеты. Сколькими способами он может это сделать?
Задача 1. Из спортивного клуба, насчитывающего 30 членов, надо составить команду из четырех чело век для участия в эстафете на 100 + 200 + 400 + 800 (м). Сколькими способами это можно сделать?
Решение. Имеем кортежи длиной 4. Ни один элемент не может входить дважды (один бегун на один отрезок дистанции). Значит,
А 4 30 = =27·28·29·30 = 657 720.
Задача 2. Сколькими способами можно обозначить вершины данного треугольника, используя буквы А, В, С, D , E и F ?
Решение. Имеем кортежи длиной 3 (у треугольника три вершины). Ни один элемент не может входить дважды. Значит,
А 3 5=
Задачи для домашней работы
Сколько всего различных пятизначных чисел, не содержащих нуля?
В классе изучают девять предметов. Скольки ми способами можно составить расписание на поне дельник, если в этот день должно быть шесть разных уроков?
Перестановка без повторений.
Задача 1. Сколькими способами можно перестав лять друг с другом цифры 1, 2, 3 и 4?
Задача 2. За столом пять мест. Сколькими спосо бами можно рассадить пятерых гостей?
Задача 3. У Лены есть восемь разных красок. Она хочет написать ими слова «Новый Год». Сколькими способами она может это сделать, если каждая буква должна быть раскрашена одним цветом и все восемь букв должны быть разными по цвету?
Решение. Присвоим каждой краске номер от 1 до 8. Тогда каждый искомый способ задается перестанов кой восьми чисел 1, 2, . 8. Значит, таких перестановок 8!. Поэтому она может написать «Новый Год» 8! = 40 320 способами.
Перестановка с повторениями.
Задача 1. У мамы два яблока и три груши. Каж дый день в течение пяти дней она дает сыну по одно му фрукту. Сколькими способами это может быть сделано?
Решение. Р(2, 3) = 10.
Задача 2. Сколькими способами можно положить 28 различных открыток в четыре одинаковых кон верта так, чтобы в каждом конверте было по семь открыток?
Решение. Пометим конверты цифрами 1, 2, 3 и 4. Тогда число различных раскладок равно
Р(7, 7, 7,7)=.
Сотрем пометки. Теперь конверты можно произволь но переставлять друг с другом, не меняя результата раскладки (теперь они неотличимы друг от друга). Так как число различных перестановок четырех кон вертов равно
Р 4 = 4!, то число различных раскладок уменьшается в
Р 4 = 4! раз и поэтому оно равно
Ответ:
Задачи для домашней работы
Сколько различных слов можно получить, пе реставляя буквы слова «ингредиент»?
Сколькими способами можно посадить за круг лый стол пять мужчин и пять женщин так, чтобы никакие два лица одного пола не сидели рядом?
Автомобильные номера состоят из четырех цифр и трех букв. Найдите число таких номеров, если используются 32 буквы русского алфавита.
Ответы: 1 .226 800. 2 . 5! ∙ 5! = 14 400. 3. 10 3 ∙32 3 .
Сочетание с повторениями.
Задача 1. В кондитерском отделе продаются пи рожные четырех сортов: наполеоны, эклеры, песочные и слоеные. Сколькими способами можно купить семь пирожных?
Решение. Здесь рассматриваются сочетания с по вторениями из 4 (четыре вида пирожных) по 7 (столько пирожных покупают). Значит,
Ответ: 120 способов.
Задача 2. В почтовом отделении продают открыт ки 10 видов. Сколькими способами можно купить в нем 12 открыток?
Решение. Здесь рассматриваются сочетания с по вторениями из 10 по 12. Имеем
Сочетания без повторений.
Задача 1. Сколькими способами в игре «Спортло то» можно выбрать шесть номеров из 49?
Решение. Здесь рассматриваются сочетания без повторения (одно число может быть по правилам игры выбрано не более одного раза) из 49 по 6.
Задача 2. У Робина — Бобина Барабека 40 соседей. Он решил пригласить двоих из них на обед. Сколько у него способов это сделать?
Решение. Здесь рассматриваются сочетания без повторений.
Задача 3. Дама сдавала в багаж семь предметов, Все они оказались украденными, но два каких-либо (по ее выбору) ей согласились поискать. Сколько у нее есть возможностей выбрать два любимых предме та?
Задача 4. В прошлые века процветала генуэзская лотерея, сохранившаяся в некоторых странах и поныне. Участники этой лотереи покупали билеты, на которых стояло число от 1 до 90. Можно было ку пить и билеты, на которых было сразу 2, 3, 4 и 5 чисел. В день розыгрыша лотереи из мешка, содержащего жетоны с числами от 1 до 90, вынимали пять жетонов. Выигрывали те, у которых все номера на билетах были среди вынутых. Если участник лотереи покупал билет с одним из чисел, то он получал при выигрыше в 15 раз больше стоимости билета; если с двумя числами (амбо), то в 270 раз больше, если с тремя числами (терн) – в 5500 раз больше, если в четырьмя числами (катерн) – 75000 раз больше, а если с пятью числами (квин) – в 1000 000 раз больше, чем стоит билет. Каково отношение «счастливых» билетов при игре, когда участник купил билет с одним числом?
Решение. Общее число исходов находится из формулы сочетаний без повторений:
С 5 90 =
Если участник купил билет с одним номером, то для выигрыша необходимо, чтобы один из вынутых номеров совпал с номером на билете. Остальные 4 номера могут быть благоприятными. Но эти 4 номера выбираются из оставшихся 89 номеров. Поэтому число благоприятных комбинаций к общему числу комбинаций равно
Ответ:
Задачи для домашней работы
Сочетайте, каково отношение «счастливых» билетов при игре, когда участник купил билет с двумя числами.
Сколькими способами можно составить набор из восьми пирожных, если имеется четыре сорта пирожных?
В классе имеется шесть сильных математиков. Сколькими способами из них можно составить команду на районную олимпиаду по математике, если от класса можно послать команду из четырех человек?
Ответы: 1. . 2. 165. 3. 15.
Источник