- Сколькими способами могут разместить 5 человек вокруг круглого стола?
- Сколькими способами могут разместиться 3 пассажира на 5 — ти местной лодке?
- Сколькими способами могут разместиться 4 пассажира в 6 местной лодке все вместе?
- Сколькими способами могут разместиться 3 пассажира в 5 — ти местной лодке?
- Сколькими способами могут разместиться 3 пассажира в 5 — ти местной лодке?
- Скількома способами можна розмістити 10 студентів за круглим столом?
- Сколькими способом можно разместить 7 человек за столом, за котором поставлено 7 приборов?
- Сколькими способами могут разместиться 3 пассажира в пятиместный лодке?
- В круглом столе участвовали 14 человек?
- Помогите с задачей?
- В круглом столе участвовали 14 человек?
- Сколькими способами могут разместиться пять человек вокруг круглого стола
- 07. Перестановки
Сколькими способами могут разместить 5 человек вокруг круглого стола?
Математика | 10 — 11 классы
Сколькими способами могут разместить 5 человек вокруг круглого стола.
Пять человек можно рассадить 5!
Последовательностей, а 5!
Ответ 120 способами.
5! = 1 * 2 * 3 * 4 * 5 = 120 способами.
Сколькими способами могут разместиться 3 пассажира на 5 — ти местной лодке?
Сколькими способами могут разместиться 3 пассажира на 5 — ти местной лодке?
Сколькими способами могут разместиться 4 пассажира в 6 местной лодке все вместе?
Сколькими способами могут разместиться 4 пассажира в 6 местной лодке все вместе?
Сколькими способами могут разместиться 3 пассажира в 5 — ти местной лодке?
Сколькими способами могут разместиться 3 пассажира в 5 — ти местной лодке.
Сколькими способами могут разместиться 3 пассажира в 5 — ти местной лодке?
Сколькими способами могут разместиться 3 пассажира в 5 — ти местной лодке.
Скількома способами можна розмістити 10 студентів за круглим столом?
Скількома способами можна розмістити 10 студентів за круглим столом?
Сколькими способом можно разместить 7 человек за столом, за котором поставлено 7 приборов?
Сколькими способом можно разместить 7 человек за столом, за котором поставлено 7 приборов.
Сколькими способами могут разместиться 3 пассажира в пятиместный лодке?
Сколькими способами могут разместиться 3 пассажира в пятиместный лодке.
В круглом столе участвовали 14 человек?
В круглом столе участвовали 14 человек.
Каждые два участника круглого стола обменялись визитками.
Сколько всего было роздано визиток ?
Помогите с задачей?
Помогите с задачей
Сколькими способами могут разместиться 5 человек в салоне
автобуса на пяти свободных местах.
В круглом столе участвовали 14 человек?
В круглом столе участвовали 14 человек.
Каждые два участника круглого стола обменялись визитками.
Сколько всего было роздано визиток?
На этой странице находится ответ на вопрос Сколькими способами могут разместить 5 человек вокруг круглого стола?, из категории Математика, соответствующий программе для 10 — 11 классов. Чтобы посмотреть другие ответы воспользуйтесь «умным поиском»: с помощью ключевых слов подберите похожие вопросы и ответы в категории Математика. Ответ, полностью соответствующий критериям вашего поиска, можно найти с помощью простого интерфейса: нажмите кнопку вверху страницы и сформулируйте вопрос иначе. Обратите внимание на варианты ответов других пользователей, которые можно не только просмотреть, но и прокомментировать.
Источник
Сколькими способами могут разместиться пять человек вокруг круглого стола
В школьном курсе понятие «круговые перестановки» встречается в 7 классе в учебнике по алгебре в разделе «Для тех, кому интересно» [3].
В комбинаторных задачах часто ставится вопрос о том, сколькими способами можно расположить в ряд, или, как говорят математики, упорядочить, все элементы некоторого множества.
Каждое расположение элементов множества в определенном порядке называют перестановкой. Получаемые при этом упорядоченные множества, которые отличаются друг от друга лишь порядком входящих в них элементов, называют перестановками без повторений из п элементовили «круговыми перестановками».
Из истории комбинаторики
Комбинаторика занимается различного вида соединениями, которые можно образовать из элементов конечного множества. Некоторые элементы комбинаторики были известны в Индии еще во II в. до н. э. Индийцы умели вычислять числа, которые сейчас называют “сочетания”. В ХII в. Бхаскара вычислял некоторые виды сочетаний и перестановок. Предполагают, что индийские ученые изучали соединения в связи с применением их в поэтике, науке о структуре стиха и поэтических произведениях. Например, в связи с подсчетом возможных сочетаний ударных (долгих) и безударных (кратких) слогов стопы из п слогов. Как научная дисциплина, комбинаторика сформировалась в Х V II в. В книге “Теория и практика арифметики” (1656 г.) французский автор Андре Таке также посвящает сочетаниям и перестановкам целую главу.
Б. Паскаль в “Трактате об арифметическом треугольнике” и в “Трактате о числовых порядках” (1665 г.) изложил учение о биномиальных коэффициентах. П. Ферма знал о связях математических квадратов и фигурных чисел с теорией соединений. Термин “комбинаторика” стал употребляться после опубликования Лейбницем в 1665 г. работы “Рассуждение о комбинаторном искусстве”, в которой впервые дано научное обоснование теории сочетаний и перестановок. Изучением размещений впервые занимался Я. Бернулли во второй части своей книги “Аг s соп j ес t ап d i” (искусство предугадывания) в 1713 г. Современная символика сочетаний была предложена разными авторами учебных руководств только в ХIХ в [4].
Все разнообразие комбинаторных формул может быть выведено из двух основных утверждений, касающихся конечных множеств — правило суммы и правило произведения. При решении задач на перестановки используется правило умножения.
Каждое расположение элементов множества в определенном порядке называют перестановкой. Рассмотрим задачу: В турнире четверо участников. Сколькими способами могут быть распределены места между ними?
Будем рассуждать в соответствии с правилом умножения. Первое место может занять любой из четырех участников. При этом второе место может занять любой из трех оставшихся, третье любой из двух оставшихся, а на четвертом месте останется последний участник. Значит, места между участниками могут быть распределены 4 ۰ 3 ۰ 2 ۰ 1 = 24 способами. Решив задачу, мы фактически подсчитали число перестановок для множества из четырех элементов. Рассуждая точно так же, можно показать, что для множества из пяти элементов число перестановок равно 5 ۰ 4 ۰ 3 ۰ 2 ۰ 1, а для множества из десяти элементов это число равно 10 ۰ 9 ۰ 8 ۰ 7 ۰ б ۰ 5 ۰ 4 ۰ 3 ۰ 2 ۰ 1.
Вообще если множество содержит п элементов, то число перестановок равно произведению п(п – 1)(п – 2) ۰…۰ 2 ۰ 1. Множители в этом произведении можно записать в обратном порядке: 1 ۰ 2 ۰ . ۰ (п – 2)(п – 1)п.
Такие произведения бывают очень длинными и часто выражаются огромными числами. Однако в математике есть специальный символ для их обозначения. Произведение всех натуральных чисел от 1 до п обозначают п! (читают: «п факториал»). Значение выражения п! можно найти для любого натурального числа п (при этом считают, что 1! = 1).
Факториалы растут удивительно быстро. Можно понаблюдать за их изменением, рассмотрев таблицу, в которой приведены факториалы чисел от 1 до 10:
Источник
07. Перестановки
Рассмотрим частный случай, когда k=n. Соответствующее этому случаю размещение называется перестановкой.
Перестановками из n элементов называются такие комбинации, каждая из которых содержит все n элементов и которые отличаются друг от друга лишь порядком расположения элементов.
Поясним это на следующем примере. Из этих трёх элементов: a, b и c. можно составить шесть перестановок: abc, acb, bac, bca, cab, cba. Все приведённые перестановки отличаются друг от друга только порядком их расположения.
Число перестановок n различных элементов обозначают символом Pn и равно
Пример 5.1. Сколькими способами можно расставить девять различных книг на полке, чтобы определенные четыре книги стояли рядом?
Решение. Будем считать выделенные книги за одну книгу. Тогда уже для шести книг существует P6=6!=720 перестановок. Однако четыре определенные книги можно переставить между собой P4=4!=24 способами. По принципу умножения имеем
P6P4 = 720×24 = 17280.
Пример 5.2. Сколько различных четырехзначных чисел можно составить из цифр 0, 1, 2, 3, если каждая цифра в изображении числа встречается один раз?
Решение. Рассматриваемое число может быть представлено как некоторая перестановка из цифр 0, 1, 2, 3, в которой первая цифра отлична от нуля. Так как число перестановок из четырех цифр равно P4=4! и из них 3! перестановок начинаются с нуля, то искомое количество равно
4! – 3! = 3×3! = 3×1×2×3 = 18.
Пример 5.3. Сколькими способами можно посадить за круглый стол n мужчин и n женщин так, чтобы никакие два лица одного пола не сидели рядом?
Решение. Естественно предположить, что как мужчины, так и женщины различимы. Предположим также, что места за столом также различимы. Пронумеруем их. Если женщины займут чётные места n! способами, то мужчины будут занимать нечётные места тоже n! способами и наоборот. По правилу умножения получаем .
Если места за столом неразличимы, то стол можно поворачивать на одно место, то при этом расположение сидящих не изменится (такая ситуация имеет место, например, на карусели). Поскольку имеется n способов расположения стола относительно сидящих, то предыдущий результат нужно разделить на n.
Вопрос. Сколькими способами можно посадить за круглый стол n супружеских пар, если супруги должны сидеть рядом?
5.1. Сколькими способами можно обить 6 стульев тканью, если имеются ткани 6 различных цветов и все стулья должны быть разного цвета.
Ответ: .
5.2. Дачник выделил на своём участке семь грядок для выращивания овощей, т. к. хочет иметь свои помидоры, огурцы, перец, лук, чеснок, салат и кабачки. Каждый вид должен иметь отдельную грядку. Сколькими способами он может расположить грядки для посадки?
Ответ: .
5.3. Пассажирский поезд состоит из трех багажных вагонов и восьми купированных. Сколькими способами можно сформировать состав, если багажные вагоны должны находиться в его начале?
Ответ: .
5.4. В первенстве края по футболу участвуют 11 команд. Сколько существует различных способов распределения мест в таблице розыгрыша, если на первое место могут претендовать только 4 определенные команды?
Ответ:
5.5. Сколькими способами можно упорядочить множество <1,2,3,…,2n>так, чтобы каждое чётное число стояло на чётном месте?
Ответ: .
5.6. Четыре мальчика и четыре девочки рассаживаются в ряд на восемь подряд расположенных мест, причем мальчики садятся на четные места, а девочки – на нечетные. Сколькими способами они могут это сделать?
Ответ: .
5.7. Сколькими способами можно посадить за круглый стол трех мужчин и трех женщин так, чтобы никакие два лица одного пола не сидели рядом?
Ответ: .
5.8. На собрании должны выступить 5 человек: А, Б, В, Г, Д. Сколькими способами можно расположить их в списке ораторов, если Б не должен выступать до того, как выступил А? Решите эту же задачу, если Б должен выступить сразу после А.
Источник