- Сколькими способами могут разместиться 5 человек вокруг круглого стола решение по формуле
- 1) сколькими способами могут разместиться 5 человек вокруг круглого стола 2) Сколькими способами можно составит флаг, состоящий из трёх
- Другие вопросы из категории
- Читайте также
- Задачи комбинаторики.
- Задачи и решения.
- Комментарии.
Сколькими способами могут разместиться 5 человек вокруг круглого стола решение по формуле
В школьном курсе понятие «круговые перестановки» встречается в 7 классе в учебнике по алгебре в разделе «Для тех, кому интересно» [3].
В комбинаторных задачах часто ставится вопрос о том, сколькими способами можно расположить в ряд, или, как говорят математики, упорядочить, все элементы некоторого множества.
Каждое расположение элементов множества в определенном порядке называют перестановкой. Получаемые при этом упорядоченные множества, которые отличаются друг от друга лишь порядком входящих в них элементов, называют перестановками без повторений из п элементовили «круговыми перестановками».
Из истории комбинаторики
Комбинаторика занимается различного вида соединениями, которые можно образовать из элементов конечного множества. Некоторые элементы комбинаторики были известны в Индии еще во II в. до н. э. Индийцы умели вычислять числа, которые сейчас называют “сочетания”. В ХII в. Бхаскара вычислял некоторые виды сочетаний и перестановок. Предполагают, что индийские ученые изучали соединения в связи с применением их в поэтике, науке о структуре стиха и поэтических произведениях. Например, в связи с подсчетом возможных сочетаний ударных (долгих) и безударных (кратких) слогов стопы из п слогов. Как научная дисциплина, комбинаторика сформировалась в Х V II в. В книге “Теория и практика арифметики” (1656 г.) французский автор Андре Таке также посвящает сочетаниям и перестановкам целую главу.
Б. Паскаль в “Трактате об арифметическом треугольнике” и в “Трактате о числовых порядках” (1665 г.) изложил учение о биномиальных коэффициентах. П. Ферма знал о связях математических квадратов и фигурных чисел с теорией соединений. Термин “комбинаторика” стал употребляться после опубликования Лейбницем в 1665 г. работы “Рассуждение о комбинаторном искусстве”, в которой впервые дано научное обоснование теории сочетаний и перестановок. Изучением размещений впервые занимался Я. Бернулли во второй части своей книги “Аг s соп j ес t ап d i” (искусство предугадывания) в 1713 г. Современная символика сочетаний была предложена разными авторами учебных руководств только в ХIХ в [4].
Все разнообразие комбинаторных формул может быть выведено из двух основных утверждений, касающихся конечных множеств — правило суммы и правило произведения. При решении задач на перестановки используется правило умножения.
Каждое расположение элементов множества в определенном порядке называют перестановкой. Рассмотрим задачу: В турнире четверо участников. Сколькими способами могут быть распределены места между ними?
Будем рассуждать в соответствии с правилом умножения. Первое место может занять любой из четырех участников. При этом второе место может занять любой из трех оставшихся, третье любой из двух оставшихся, а на четвертом месте останется последний участник. Значит, места между участниками могут быть распределены 4 ۰ 3 ۰ 2 ۰ 1 = 24 способами. Решив задачу, мы фактически подсчитали число перестановок для множества из четырех элементов. Рассуждая точно так же, можно показать, что для множества из пяти элементов число перестановок равно 5 ۰ 4 ۰ 3 ۰ 2 ۰ 1, а для множества из десяти элементов это число равно 10 ۰ 9 ۰ 8 ۰ 7 ۰ б ۰ 5 ۰ 4 ۰ 3 ۰ 2 ۰ 1.
Вообще если множество содержит п элементов, то число перестановок равно произведению п(п – 1)(п – 2) ۰…۰ 2 ۰ 1. Множители в этом произведении можно записать в обратном порядке: 1 ۰ 2 ۰ . ۰ (п – 2)(п – 1)п.
Такие произведения бывают очень длинными и часто выражаются огромными числами. Однако в математике есть специальный символ для их обозначения. Произведение всех натуральных чисел от 1 до п обозначают п! (читают: «п факториал»). Значение выражения п! можно найти для любого натурального числа п (при этом считают, что 1! = 1).
Факториалы растут удивительно быстро. Можно понаблюдать за их изменением, рассмотрев таблицу, в которой приведены факториалы чисел от 1 до 10:
Источник
1) сколькими способами могут разместиться 5 человек вокруг круглого стола 2) Сколькими способами можно составит флаг, состоящий из трёх
горизонтальных полос различных цветов, если можно использовать материал семи различных цветов?
4) Какова вероятность того, что наудачу выбраранное целое число от 1 до 30 (включительно) является делителем числа 30?
5) В НИИ работает 120 человек , из них 70 знают английский язык, 60 немецкий, а 50 знают оба. Какова вероятность того что выбранный наудачу сотрудник не знает ни одного иностранного языка?
1) 5*4*3*2*1=120 вариантов
2) 7*6*5= 210 вариантов
4) Делители числа 30 — это 1,2,3,5,6,10,15,30, т.е. 8 чисел, а всего в диапазоне 30 чисел, значит: 8/30= 0,27
5)Всего 120 человек, иностранные языки знают 60+70-50=80 человек. Значит не знают иностранного языка 120-80=40 человек. Вероятность = 40/120=0,3
Другие вопросы из категории
Читайте также
2.Сколько трехзначных чисел можно составить из цифр без повторений цифр?
3.Из партии изделий товаровед отбирает изделия высшего сорта. Вероятность того, что наудачу взятое изделие, окажется высшего сорта равна 0,8. Найдите вероятность того, что из трех проверенных изделий только два высшего сорта.
4.На соревнованиях по стрельбе стрелок попадает в десятку с вероятностью 0,04, в девятку 0,1, в восьмерку – 0,2. Какова вероятность того, что одним выстрелом стрелок наберет не менее восьми очков.
5.В партии из 2500 семян подсолнечника 50 семян не взошли. Какова относительная частота появления невсхожих семян?
6.Сколькими способами из 10 игроков волейбольной команды можно выбрать стартовую шестерку?
7.В 11 классе изучают 11 предметов. Сколькими способами можно составить расписание на четверг, если должно быть 8 различных уроков и их порядок неважен
8.Какова вероятность того, что при бросании игрального кубика выпадет более 4 очков?9.На соревнованиях по легкой атлетике приехала команда из 12 спортсменок. Сколькими способами тренер может определить, кто из них побежит в эстафете 4 по 100 на первом, втором, третьем и четвертом этапах?
10.Сколько различных трехзначных чисел, в которых цифры не повторяются, можно составить из цифр 0,2,3,7,9
11.Сколькими способами можно закрасить 6 клеток таким образом, чтобы 3 клетки были красными, а 3 оставшиеся были закрашены (каждая своим цветом) былым, черным и зеленым?
12.Вычислите частоту в процентах (с точностью до первой десятичной цифры) буква «О» в двустишии М. Ю. Лермонтова «Белеет парус одинокий / В тумане моря голубом. » (знаки препинания и пробелы не учитывайте).
13.В классе 25 учеников, из которых 12 умных и 16 красивых. При этом каждый их учеников умный или (и) красивый. Какова вероятность того. Что случайно вызванный по списку ученик и умный и красивый?
14.Вычислите число размещений по формуле
15.В шахматном турнире участвуют 9 человек. Каждый из них сыграл с каждым по одной партии. Сколько всего партий было сыграно?
16.Сколькими способами могут разместиться 4 человека в салоне автобуса на четырех свободных местах?
17.На карточках выписаны числа от 1 до 10 (на одной карточке – одно число). Карточки положили на стол и перемешали. Какова вероятность того, что на вытащенной карточке окажется число 3?
18.Найдите у многочлена коэффициент при
19.Сколько существует вариантов выбора двух чисел из четырех?
20.Сколькими способами могут разместиться 3 человека в четырехместном купе на свободных местах?
21.Решите уравнение:
22.Вычислите число сочетаний
23.Ученик выписал свои оценки по алгебре: 3,3,4,2,5,4,4,5,4,3. Найдите модуль разности между средним арифметическим и медианой этого ряда данных
24.Середины сторон прямоугольника являются вершинами ромба. В прямоугольник случайным образом брошена точка. Найдите вероятность того, что точка попадет в ромб.
2)Сколькими способами читатель может выбрать 3 книжки из 5
Источник
Задачи комбинаторики.
Чтобы научиться быстро бегать, нужно много бегать. Чтобы научиться хорошо решать сложные задачи, нужно решать много простых задач. И то, и другое надо делать с умом. Последовательно тренировать определенные группы мышц, и постепенно вникать в смысл математических выражений.
Давайте рассмотрим несколько очень простых задач, сравнивая их между собой. Сравнение поможет нам понять и запомнить, как выбрать нужную формулу для подсчёта числа вариантов в той или иной ситуации. А чтобы никто не усомнился в том, что задачи действительно простые, я взяла за основу Сборник тестовых заданий к учебнику Н.Я. Виленкина и др. «Математика. 5 класс». Конечно, для пятиклассников это задания высокого уровня сложности «С», но они справляются. Дело в том, что эти задачи можно решить как простым перебором вариантов, тем быстрее, чем выше уровень обобщения, так и по формулам комбинаторики. Старшеклассникам рекомендую повторить формулы и правила комбинаторики, если вы попали на эту страницу из поисковика, миновав теорию.
Итак,
— внимательно читаем условия 2-ух задач из одной строки таблицы;
— решаем обе задачи любыми доступными способами (желательно не одним);
— открываем ответы нажатием на зеленые кнопки и сравниваем их со своими ответами;
— открываем решения и комментарии к ним нажатием на желтые кнопки.
Помните, что ваше решение не обязательно должно совпадать с моим, достаточно, чтобы оно было логичным и позволяло получить верный ответ.
Задачи и решения.
Задача 1a | Задача 1b |
---|---|
При окончании деловой встречи специалисты обменялись визитными карточками. Сколько всего визитных карточек перешло из рук в руки, если во встрече участвовали 6 специалистов? | При встрече каждый из друзей пожал другому руку. Сколько всего было рукопожатий, если встретились 6 друзей? |
Задача 2a | Задача 2b |
В хоровом кружке занимаются 9 человек. Необходимо выбрать двух солистов. Сколькими способами это можно сделать? | В спортивной команде 9 человек. Необходимо выбрать капитана и его заместителя. Сколькими способами это можно сделать? |
Два солиста равноправны. (Может быть, и петь планируют дуэтом.) Нас не волнует порядок следования в группе из 2-ух человек, выбранных из 9-ти. Значит определяем число сочетаний из 9 по 2. Казалось бы, мы снова выбираем 2-ух человек из 9-ти, но теперь между ними качественная разница. Они будут выполнять разные обязанности в команде. Мы выбираем капитана И заместителя независимо друг от друга. Поэтому применим правило умножения вариантов (И-правило). Из 9-ти человек капитана можно выбрать 9-тью способами. Его заместителя из оставшихся 8-ми человек — 8-мью способами. Общее число вариантов: 9·8 = 72. (Заметьте, что если сначала выбрать заместителя из 9 человек, а потом капитана из оставшихся 8-ми, результат будет тот же.) Можно рассуждать иначе. Есть два места для капитана и его заместителя, нужно разместить на них 2-ух человек, выбрав их из 9-ти. Такие группировки (выборки) называются размещениями. Число размещений определяем по формуле | |
Задача 3a | Задача 3b |
Сколько существует вариантов рассаживания вокруг стола 6 гостей на 6 стульях? | В понедельник в пятом классе 5 уроков: музыка, математика, русский язык, литература и история. Сколько различных способов составления расписания на понедельник существует? |
Легко понять, что в этой задаче речь идет о перестановках. 6 гостей занимают все 6 стульев и могут только меняться местами. Число перестановок из 6 определяем по формуле Может быть, не так очевидно, но это тоже перестановки. С точки зрения математики, вообще та же самая задача. Представьте себе, что расписание составляете вы. Чертите таблицу с пятью строками для пяти уроков («готовите стулья») и вписываете в каждую строку название одного из 5-ти предметов («рассаживаете гостей»). Число перестановок из 5 определяем по формуле | |
Задача 4a | Задача 4b |
Пятеро друзей сыграли между собой по одной партии в шахматы. Сколько всего партий было сыграно? | Сколькими способами 10 футбольных команд могут разыграть между собой золотые, бронзовые и серебряные медали? |
В шахматной партии 2 равноправных участника (точно также, как в задаче о рукопожатиях). Значит из 5-ти человек формируем группы по 2 без учета порядка следования — сочетания. Определяем число сочетаний из 5 по 2. На пьедестале почёта находятся 3 команды из 10, и для них очень существенно, кто какое место занял, т.е. порядок следования. Составление групп с учетом порядка следования — размещения. Число размещений определяем по формуле | |
Задача 5a | Задача 5b |
В меню столовой предложено на выбор 2 первых блюда, 6 вторых и 4 третьих блюда. Сколько различных вариантов обеда, состоящего из первого, второго и третьего блюда, можно составить? | Имеется 6 видов овощей. Решено готовить салаты из трёх видов овощей. Сколько различных вариантов салатов можно приготовить? |
Задача 6a | Задача 6b |
В магазине продаются блокноты 7 разных видов и ручки 4 разных видов. Сколькими разными способами можно выбрать покупку из одного блокнота и одной ручки? | В магазине продаются блокноты 7 разных видов и ручки 4 разных видов. Сколькими способами можно выбрать покупку из двух разных блокнотов и одной ручки? |
Выбираем одну ручку И один блокнот. Одну ручку из 4-ёх 4-мя способами, один блокнот из 7-ми — 7-ю способами. Применяем правило умножения Выбираем одну ручку И два блокнота. Снова можем применить правило умножения вариантов. Одну ручку из 4-ёх можем выбрать 4-мя способами, два блокнота из 7-ми — ? способами. | |
Задача 7a | Задача 7b |
На прививку в медпункт отправились 7 друзей. Сколькими разными способами они могут встать в очередь у медицинского кабинета? | Секретный замок состоит из 4 барабанов, на каждом из которых можно выбрать цифры от 0 до 9. Сколько различных вариантов выбора шифра существует? |
Число способов встать в очередь равно числу перестановок 7-ми друзей в пределах этой очереди. Задача такая же, как о гостях и стульях, но обратите внимание, насколько быстро растет число вариантов при увеличении числа переставляемых предметов. На каждом барабане можно выбрать 1-ну цифру из 10-ти 10-тью способами и независимо от других, поэтому применяем правило умножения: Можно также считать, что нужно разместить 10 цифр на 4-ёх местах с повторениями. В комбинаторике существует раздел «Выборки с повторениями» (см. подробнее). В данном случае нам нужна формула для размещений. Число размещений с повторениями определяется как n k , где n — количество элементов для выбора (здесь n = 10 цифр), k — объём выборки или количество возможных повторов одного элемента (здесь k = 4, одна и та же цифра может быть установлена на всех четырех барабанах). Таким образом, искомое число вариантов | |
Задача 8a | Задача 8b |
Сколько различных трёхзначных чисел можно составить при помощи цифр 4, 7, 9? (Цифры в записи числа не повторяются). | Сколько различных трёхзначных чисел можно составить с помощью цифр 1, 3, 7? (Цифры могут повторяться). |
Трёхзначное число состоит из 3-ёх цифр, которые нам даны. Поскольку цифры не могут повторяться, то получать различные числа можно только путем их перестановки. Число перестановок из 3-ёх определяем по формуле Если цифры могут повторяться, то по разрядам их можно размещать независимо от друг от друга. Значит можем применить правило умножения вариантов (И-правило). Одну цифру из трёх для разряда сотен можно выбрять 3-мя способами, И одну цифру из тех же трёх для разряда десятков — 3-мя способами, И одну из трёх для разряда единиц — 3-мя способами. Общее число вариантов | |
Задача 9a | Задача 9b |
Сколько различных трёхзначных чисел можно составить с помощью цифр 7 и 3? | Сколько различных двузначных чисел можно составить при помощи цифр 4, 7, 9? (Цифры в записи числа не повторяются). |
Задача 10a | Задача 10b |
Сколько нечетных трёхзначных чисел можно составить из цифр 3, 4, 8, 6? (Цифры в записи числа не могут повторяться). | Сколько различных трёхзначных чисел можно составить из цифр 7, 6, 5, 0, если цифры в записи числа не могут повторяться? |
Искомое число должно оканчиваться цифрой 3, так как 4, 6 и 8 делятся на 2 без остатка. Поэтому позиция единиц у нас уже занята, и остается разместить 3 цифры на 2-ух позициях — десятков и сотен. Число размещений из 3 по 2 определяем по формуле Сначала определим, сколько всего можно составить групп из 4-ёх заданных цифр по 3 с учётом порядка следования и без повторений. | |
Задача 11a | Задача 11b |
Сколько четных трёхзначных чисел можно составить из цифр 3, 4, 5, 6? (Цифры в записи числа не могут повторяться). | Сколько четных трёхзначных чисел можно составить из цифр 3, 4, 5, 6? (Цифры в записи числа могут повторяться). |
Четными будут числа, оканчивающиеся на 4 ИЛИ на 6. Поэтому подсчитаем количество вариантов, заканчивающихся на одну из этих цифр, а затем воспользуемся правилом сложения (ИЛИ-правилом), чтобы определить общее число вариантов. Так же, как в предыдущем случае рассмотрим отдельно числа, заканчивающиеся 4-кой и 6-кой, а затем воспользуемся правилом сложения вариантов. | |
Задача 12a | |
Сколько различных дробей можно составить с использованием цифр 2, 3, 4? (В числителе и знаменателе не может быть одна и та же цифра.) | |
Заметим, что не только в числителе и знаменателе не может быть одна и та же цифра, но цифры вообще не могут повторяться, иначе задача не имела бы смысла. В число дробей входили бы, например, 2/3, 2/33, 2/333, 2/3333 и т.п. Таких вариантов бесконечное число. Если вы получили ответ 12, а не 18, обязательно разберитесь почему. Это иначе понятое условие задачи? Забыты неправильные дроби? Ошибка в комбинаторике? Комментарии.O формуле для числа сочетаний. O формуле для числа размещений. Выборки с повторениями. | |
Перейти на главную страницу сайта. | |