Сколькими способами могут быть распределены три различные медали

Содержание
  1. Сколькими способами три награды (за 1, 2, 3 места) могут быть распределены между 10 участниками соревнования?
  2. Сколькими различными способами могут распределиться призовые места(первое, второе, третье) между восемью хоккейными командами?
  3. Сколькими разными способами могут распределиться призовые места ( первое, второе, третье) между пятью велогонщиками?
  4. Откуда берётся 3, 5x?
  5. Когда участники соревнований распредилились на команды по 6 человек то команд оказалась 9?
  6. Соревнование по прыжкам в длину принимали участие 250 участников Известно что в соревновании по плаванию участвуют учеников 5 раз меньше чем соревнования по прыжкам в длину Сколько всего участников уч?
  7. В спортивных соревнованиях участвуют 8 команд?
  8. В соревнованиях по бегу участвуют 5 спортсменов?
  9. В соревнованиях учавствует 10 человек?
  10. 11. сколькими способами могут распределиться призовые места среди 9 команд?
  11. 2. В соревнованиях участвуют р человек?
  12. Задачи по теме «Комбинаторика»
  13. Дистанционное обучение как современный формат преподавания
  14. Методика обучения математике в основной и средней школе в условиях реализации ФГОС ОО
  15. Математика: теория и методика преподавания в образовательной организации
  16. Оставьте свой комментарий
  17. Безлимитный доступ к занятиям с онлайн-репетиторами
  18. Подарочные сертификаты
  19. Элементы комбинаторики презентация к уроку по алгебре (9 класс) на тему
  20. Скачать:
  21. Предварительный просмотр:
  22. Подписи к слайдам:
  23. По теме: методические разработки, презентации и конспекты

Сколькими способами три награды (за 1, 2, 3 места) могут быть распределены между 10 участниками соревнования?

Математика | 10 — 11 классы

Сколькими способами три награды (за 1, 2, 3 места) могут быть распределены между 10 участниками соревнования?

Если можно, то с пояснениями, откуда что берётся.

Может быть 4 варианта.

Сколькими различными способами могут распределиться призовые места(первое, второе, третье) между восемью хоккейными командами?

Сколькими различными способами могут распределиться призовые места(первое, второе, третье) между восемью хоккейными командами?

Сколькими разными способами могут распределиться призовые места ( первое, второе, третье) между пятью велогонщиками?

Сколькими разными способами могут распределиться призовые места ( первое, второе, третье) между пятью велогонщиками?

Откуда берётся 3, 5x?

Откуда берётся 3, 5x.

Когда участники соревнований распредилились на команды по 6 человек то команд оказалась 9?

Когда участники соревнований распредилились на команды по 6 человек то команд оказалась 9.

Сколько было участников соревнований.

Соревнование по прыжкам в длину принимали участие 250 участников Известно что в соревновании по плаванию участвуют учеников 5 раз меньше чем соревнования по прыжкам в длину Сколько всего участников уч?

Соревнование по прыжкам в длину принимали участие 250 участников Известно что в соревновании по плаванию участвуют учеников 5 раз меньше чем соревнования по прыжкам в длину Сколько всего участников участвовал в соревнованиях.

В спортивных соревнованиях участвуют 8 команд?

В спортивных соревнованиях участвуют 8 команд.

Сколькими способами могут быть распределены золотая, серебряная и бронзовая медали, если каждая команда может получит только одну медаль.

В соревнованиях по бегу участвуют 5 спортсменов?

В соревнованиях по бегу участвуют 5 спортсменов.

Сколькими способами могут быть распределены места между ними.

В соревнованиях учавствует 10 человек?

В соревнованиях учавствует 10 человек.

Сколькими способами могут распределить между ними места.

11. сколькими способами могут распределиться призовые места среди 9 команд?

11. сколькими способами могут распределиться призовые места среди 9 команд?

2. В соревнованиях участвуют р человек?

2. В соревнованиях участвуют р человек.

Сколькими способами можно распределить между ними призовые места (золото, серебро, бронза)?

На странице вопроса Сколькими способами три награды (за 1, 2, 3 места) могут быть распределены между 10 участниками соревнования? из категории Математика вы найдете ответ для уровня учащихся 10 — 11 классов. Если полученный ответ не устраивает и нужно расшить круг поиска, используйте удобную поисковую систему сайта. Можно также ознакомиться с похожими вопросами и ответами других пользователей в этой же категории или создать новый вопрос. Возможно, вам будет полезной информация, оставленная пользователями в комментариях, где можно обсудить тему с помощью обратной связи.

Источник

Задачи по теме «Комбинаторика»

Задачи для решения на закрепление нового материала

Задача № 1 . Сколькими способами могут быть расставлены 5 участниц финального

забега на 5-ти беговых дорожках?

Решение : Р 5 = 5!= 1 ∙2 ∙3 ∙4 ∙5 = 120 способов.

Задача №2. Сколько трехзначных чисел можно составить из цифр 1,2,3, если каждая

Читайте также:  Способы передачи тепла от нагретой поверхности

цифра входит в изображение числа только один раз?

Решение : Число всех перестановок из трех элементов равно Р 3 =3!, где 3!=1 * 2 * 3=6

Значит, существует шесть трехзначных чисел, составленных из цифр 1,2,3.

Задача № 3. Сколькими способами четверо юношей могут пригласить четырех из шести

девушек на танец?

Решение : два юноши не могут одновременно пригласить одну и ту же девушку. И

варианты, при которых одни и те же девушки танцуют с разными юношами,

считаются разными, поэтому:

Задача № 4 . Сколько различных трехзначных чисел можно составить из цифр 1, 2, 3, 4, 5,

6, 7, 8, 9 при условии, что в записи числа каждая цифра используется только

Решение : В условии задачи предложено подсчитать число всевозможных комбинаций из

трех цифр, взятых из предположенных девяти цифр, причём порядок

расположения цифр в комбинации имеет значение (например, числа 132)

и 231 различные). Иначе говоря, нужно найти число размещений из девяти

элементов по три.

По формуле числа размещений находим:

Ответ : 504 трехзначных чисел.

Задача №5 Сколькими способами из 7 человек можно выбрать комиссию, состоящую из 3

Решение: Чтобы рассмотреть все возможные комиссии, нужно рассмотреть все

возможные 3 – элементные подмножества множества, состоящего из 7

человек. Искомое число способов равно

Задача № 6. В соревновании участвуют 12 команд. Сколько существует вариантов

распределения призовых (1, 2, 3) мест?

Решение : А 12 3 = 12 ∙11 ∙10 = 1320 вариантов распределения призовых мест. Ответ : 1320 вариантов.

Задача № 7. На соревнованиях по лёгкой атлетике нашу школу представляла команда из

10 спортсменов. Сколькими способами тренер может определить, кто из них

побежит в эстафете 4  100 м на первом, втором, третьем и четвёртом этапах?

Решение: Выбор из 10 по 4 с учётом порядка: способов.

Ответ: 5040 способов.

Задача № 8. Сколькими способами можно выложить в ряд красный, черный, синий и

Решение: На первое место можно поставить любой из четырех шариков (4 способа), на

второе – любой из трех оставшихся (3 способа), на третье место – любой из

оставшихся двух (2 способа), на четвертое место – оставшийся последний шар.

Всего 4 · 3 · 2 · 1 = 24 способа.

Р 4 = 4! = 1 · 2 · 3 · 4 = 24. Ответ: 24 способа.

Задача № 9 . Учащимся дали список из 10 книг, которые рекомендуется прочитать во

время каникул. Сколькими способами ученик может выбрать из них 6 книг?

Решение: Выбор 6 из 10 без учёта порядка: способов.

Ответ: 210 способов.

Задача № 10 . В 9 классе учатся 7 учащихся, в 10 — 9 учащихся, а в 11 — 8 учащихся. Для

работы на пришкольном участке надо выделить двух учащихся из 9 класса,

трех – из 10, и одного – из 11 . Сколько существует способов выбора

учащихся для работы на пришкольном участке?

Решение: Выбор из трёх совокупностей без учёта порядка, каждый вариант выбора из

первой совокупности (С 7 2 ) может сочетаться с каждым вариантом выбора из

второй (С 9 3 ) ) и с каждым вариантом выбора третьей (С 8 1 ) по правилу

Ответ: 14 112 способов.

Задача № 11. Девятиклассники Женя, Сережа, Коля, Наташа и Оля побежали на

перемене к теннисному столу, за которым уже шла игра. Сколькими

способами подбежавшие к столу пятеро девятиклассников могут занять

очередь для игры в настольный теннис?

Решение : Первым в очередь мог встать любой девятиклассник, вторым – любой из

оставшихся троих, третьим – любой из оставшихся двоих и четвёртым –

девятиклассник, подбежавший предпоследним, а пятым – последний. По

правилу умножения у пяти учащихся существует 5· 4  3  2  1=120 способов

Курс повышения квалификации

Дистанционное обучение как современный формат преподавания

  • Сейчас обучается 801 человек из 76 регионов

Курс повышения квалификации

Методика обучения математике в основной и средней школе в условиях реализации ФГОС ОО

  • Сейчас обучается 283 человека из 69 регионов

Курс профессиональной переподготовки

Математика: теория и методика преподавания в образовательной организации

  • Сейчас обучается 605 человек из 75 регионов

Ищем педагогов в команду «Инфоурок»

Номер материала: ДБ-212675

Международная дистанционная олимпиада Осень 2021

Не нашли то что искали?

Вам будут интересны эти курсы:

Читайте также:  Точечная сварка это способ контактной сварки при котором

Оставьте свой комментарий

Авторизуйтесь, чтобы задавать вопросы.

Безлимитный доступ к занятиям с онлайн-репетиторами

Выгоднее, чем оплачивать каждое занятие отдельно

Рособрнадзор откажется от ОС Windows при проведении ЕГЭ до конца 2024 года

Время чтения: 1 минута

В Пензенской области запустят проект по снижению административной нагрузки на учителей

Время чтения: 1 минута

В российских школах оборудуют кабинеты для сообщества «Большой перемены»

Время чтения: 1 минута

Минпросвещения разрабатывает образовательный минимум для подготовки педагогов

Время чтения: 2 минуты

Спортивные и творческие кружки должны появиться в каждой школе до 2024 года

Время чтения: 1 минута

Минпросвещения будет стремиться к унификации школьных учебников в России

Время чтения: 1 минута

Подарочные сертификаты

Ответственность за разрешение любых спорных моментов, касающихся самих материалов и их содержания, берут на себя пользователи, разместившие материал на сайте. Однако администрация сайта готова оказать всяческую поддержку в решении любых вопросов, связанных с работой и содержанием сайта. Если Вы заметили, что на данном сайте незаконно используются материалы, сообщите об этом администрации сайта через форму обратной связи.

Все материалы, размещенные на сайте, созданы авторами сайта либо размещены пользователями сайта и представлены на сайте исключительно для ознакомления. Авторские права на материалы принадлежат их законным авторам. Частичное или полное копирование материалов сайта без письменного разрешения администрации сайта запрещено! Мнение администрации может не совпадать с точкой зрения авторов.

Источник

Элементы комбинаторики
презентация к уроку по алгебре (9 класс) на тему

В презентации рассмотрены основные понятия комбинаторики, а также приведены решения задач. Данная работа можетбыть полезна на уроках алгебры в 9 классепри изучении темы «Элементы комбинаторики и теории вероятностей», а также на занятиях математического кружка.

Скачать:

Вложение Размер
elementy_kombinatoriki.ppt 1.07 МБ

Предварительный просмотр:

Подписи к слайдам:

Теорема 1. Правило умножения : если из некоторого конечного множества первый объект (элемент а ) можно выбрать n 1 способами, а второй объект (элемент b ) – n 2 способами, то оба объекта ( а и b ) в указанном порядке можно выбрать n 1 ∙ n 2 способами. Теорема 2. Правило сложения : если некоторый объект а можно выбрать п 1 способами, а объект b можно выбрать n 2 способами, причем первые и вторые способы не пересекаются, то любой из объектов ( а или b ) можно выбрать n 1 + n 2 способами.

Схема выбора без возвращений Размещения из n элементов по k элементов (0 ≤ k ≤ n ) где n ! = 1 ∙ 2 ∙ 3 ∙ … ∙ n, причем 1! = 1, 0! = 1 Перестановки из n элементов Сочетания из n элементов по k элементов (0 ≤ k ≤ n )

Схема выбора с возвращением Размещения с повторениями Сочетания с повторениями Перестановки с повторениями ( n 1 + n 2 + n k = n )

(1-я строка – без повторений, 2-я строка – с повторениями) Размещения Перестановки Сочетания 1 2 ( n 1 + n 2 + n k = n )

Задача 1. Сколько различных трехзначных чисел можно составить из цифр 0, 2, 3, 5, 7 если: а) цифры не повторяются; б) цифры могут повторяться? Решение: а) Первую цифру можно выбрать четырьмя способами (числа вида 025, 073, … не считаем трехзначными). Выбрав первую цифру (например, цифру 5) вторую цифру можно также выбрать четырьмя способами . Третью цифру, очевидно, можно выбрать тремя способами. Следовательно, согласно правилу умножения имеется 4 ∙ 4 ∙ 3 = 48 способов расстановки цифр, т.е. искомых трехзначных чисел будет 48 . б) Если цифры могут повторяться, то трехзначные числа можно составить 4 ∙ 5 ∙ 5 = 100 способами .

Задача 2. Составить различные размещения по два элемента из элементов множества А = <3, 4, 5>и подсчитать их число. Решение: Из трех элементов можно образовать следующие размещения по два элемента: (3,4); (4,3); (3,5); (5,3); (4,5); (5,4). Таким образом, всего их 6. Однако число размещений можно посчитать по формуле: или

Задача 3. Сколькими способами 3 награды (за I , II , III места) могут быть распределены между 10 участниками соревнований? Решение: Будем считать, что каждый участник соревнований может получить не более одной награды. Выбрать 3-х участников из 10 можно следующим образом, так как «призовые тройки» отличаются друг от друга либо составом участников, либо порядком их следования. Этот же результат можно получить, применяя правило умножения: претендентов на главную награду ( I место) 10, на вторую – 9, на третью – 8; число различных способов распределения наград равно 10∙9∙8=720.

Задача 4. В вазе стоят 9 красных и 7 розовых гвоздик. Сколькими способами можно выбрать из нее: а) 3 гвоздики; б) 6 гвоздик одного цвета; в) 4 красных и 3 розовые гвоздики? Решение: а) Так как порядок выбора цветов не имеет значение, то выбрать 3 гвоздики из вазы, в которой стоят 16 гвоздик, можно б) Выбрать 6 гвоздик красного цвета можно

а 6 гвоздик розового цвета одного цвета (красных или розовых) можно способом. в) Выбрать 4 красных гвоздики из 9 имеющихся можно способами, а 3 розовых из 7 имеющихся можно способами. Поэтому букет из 4 красных и 3 розовых гвоздик можно составить по правилу умножения способами.

Задача 5. На диск сейфа нанесены 12 букв, а секретное слово состоит из 5 букв. Сколько неудачных попыток может быть сделано человеком, не знающим секретного слова? Решение: Общее число комбинаций можно вычислить по формуле Значит, неудачных попыток может быть 248831. Впрочем, обычно делают сейфы так, что после первой же неудачной попытки открыть их раздается сигнал тревоги.

Задача 6. Пять человек вошли в лифт на 1-м этаже девятиэтажного дома. Сколькими способами пассажиры могут выйти из лифта на нужных этажах? Решение: Каждый из 5 пассажиров может выйти на любом из восьми этажей со 2-го по 9-ый включительно. Возможными вариантами их выхода являются, например, 2-3-5-5-5 (это значит, что на 2-ом этаже вышел один пассажир, на 3-ем – один, а трое вышли на 5-ом этаже) или 9-9-9-9-9, или 4-5-6-7-9 и т.д. Общее число выходов пассажиров, по формуле равно Этот же результат можно получить, используя правило умножения: для 1-го пассажира имеется 8 вариантов выхода на этаже, для 2-го тоже 8, и для 3-го тоже 8, и для 4-го – 8, и для 5-го – 8. Всего получается 8∙8∙8∙8∙8=8 5 вариантов для выхода 5-ти пассажиров.

Задача 7. Сколько различных « слов » (под « словом » понимается любая комбинация букв) можно составить, переставляя буквы в слове АГА? MISSISSIPPI ? Решение: Из трех букв можно составить Р 3 =3!=6 различных трехбуквенных « слов » . В слове АГА буква А повторяется, а перестановка одинаковых букв не меняет « слова » . Поэтому число перестановок с повторениями меньше числа перестановок без повторений во столько раз, сколько можно переставлять повторяющиеся буквы. В данном слове две буквы (1-ая и 3-я) повторяются; поэтому различных трехбуквенных « слов » из букв АГА можно составить столько: Впрочем, ответ можно получить и проще: каждое слово из букв А, Г и А однозначно определяется положением буквы Г; их всего три, поэтому и различных слов будет тоже три. .

Результат можно получить другой формулой: По этой же формуле найдем число одиннадцатибуквенных « слов » при перестановке букв в слове MISSISSIPPI . Здесь п =11, п 1 =1, п 2 =4 (4 буквы S ), п 3 =4 (4 буквы I ), п 4 =2 (2 буквы Р), поэтому

По теме: методические разработки, презентации и конспекты

Элементы комбинаторики и основы теории вероятности

Данная программа элективного курса объёмом 34 часа рассчитана на учащихся 8 классов и является дополнением общеобразовательной программы, в которой данному вопросу внимания уделяется мало.

Элементы комбинаторики. Поурочные разработки. Алгебра 9 класс

Работа содержит все, что необходимо для подготовки к урокам: подробные поурочные планы, примеры, задачи с разбором решения, разноуровневые проверочные работы.

Элементы комбинаторики. Поурочные разработки. Алгебра 9 класс

Работа содержит все, что необходимо для подготовки к урокам: подробные поурочные планы, примеры, задачи с разбором решения, разноуровневые проверочные работы.

Опорный конспект по теме «Элементы комбинаторики»

В данном конспекте даны основные определения и формулы для вычисления числа перестановок, размещений и сочетаний без повторений. Можно использовать на уроках комбинаторики в 11-м классе (базовый урове.

Тесты по теме «Элементы комбинаторики и теории вероятностей»

В материале предлагается 10 вариантов тестов по теме «Элементы комбинаторики и теории вероятностей». Тесты можно использовать с использованием любого учебника, рекомендованного или допущенного Ф.

«Элементы комбинаторики в школьном курсе математике»

Исторические сведения, дерево возможностей, перестановки, сочетания, размещения.

Методическая разработка «Элементы комбинаторики и теории вероятностей»

Методическая разработка раздела программы по математике.

Источник

Читайте также:  Перечислите способы геометрического нивелирования
Оцените статью
Разные способы