- Сколькими способами 6 человек можно посадить по кругу
- Сколькими способами можно рассадить 6 человек за столом по кругу
- Сколькими способами можно рассадить 6 участников за круглым столом?
- Если участников собрания рассадить по 6 человек за каждый стол, то троим не хватить месть?
- У круглого стола поставили 4 стула?
- Если участников собрания рассадить по шесть человек на каждый стол, то троим не хватит месть?
- Сколькими способами могут разместиться 5 человек вокруг круглого стола?
- Если участников собрания рассадить по 6 человек за каждый стол, то троим не хватит мест?
- За круглым столом расположились 30 взрослых участников дискуссии так, что правым соседом каждой женщины был мужчина, а у половины мужчин справа сидела женщина?
- За круглым столом 30 участников дискуссии сели так, что правым соседом каждой женщины был мужчина, а у половины мужчин справа сидела женщина?
- Сколькими способами можно рассадить семь человек за круглый стол?
- Сколькими способами можно рассадить 7 лиц за столом, где поставлено 7 приборов?
- У круглого стола поставили 4 стула?
- Сколькими способами 6 человек можно посадить по кругу
- Математика — онлайн помощь
- ПРИМЕРЫ РЕШЕНИЯ ЗАДАЧ
- Примеры и задачи для самостоятельного решения
Сколькими способами 6 человек можно посадить по кругу
В школьном курсе понятие «круговые перестановки» встречается в 7 классе в учебнике по алгебре в разделе «Для тех, кому интересно» [3].
В комбинаторных задачах часто ставится вопрос о том, сколькими способами можно расположить в ряд, или, как говорят математики, упорядочить, все элементы некоторого множества.
Каждое расположение элементов множества в определенном порядке называют перестановкой. Получаемые при этом упорядоченные множества, которые отличаются друг от друга лишь порядком входящих в них элементов, называют перестановками без повторений из п элементовили «круговыми перестановками».
Из истории комбинаторики
Комбинаторика занимается различного вида соединениями, которые можно образовать из элементов конечного множества. Некоторые элементы комбинаторики были известны в Индии еще во II в. до н. э. Индийцы умели вычислять числа, которые сейчас называют “сочетания”. В ХII в. Бхаскара вычислял некоторые виды сочетаний и перестановок. Предполагают, что индийские ученые изучали соединения в связи с применением их в поэтике, науке о структуре стиха и поэтических произведениях. Например, в связи с подсчетом возможных сочетаний ударных (долгих) и безударных (кратких) слогов стопы из п слогов. Как научная дисциплина, комбинаторика сформировалась в Х V II в. В книге “Теория и практика арифметики” (1656 г.) французский автор Андре Таке также посвящает сочетаниям и перестановкам целую главу.
Б. Паскаль в “Трактате об арифметическом треугольнике” и в “Трактате о числовых порядках” (1665 г.) изложил учение о биномиальных коэффициентах. П. Ферма знал о связях математических квадратов и фигурных чисел с теорией соединений. Термин “комбинаторика” стал употребляться после опубликования Лейбницем в 1665 г. работы “Рассуждение о комбинаторном искусстве”, в которой впервые дано научное обоснование теории сочетаний и перестановок. Изучением размещений впервые занимался Я. Бернулли во второй части своей книги “Аг s соп j ес t ап d i” (искусство предугадывания) в 1713 г. Современная символика сочетаний была предложена разными авторами учебных руководств только в ХIХ в [4].
Все разнообразие комбинаторных формул может быть выведено из двух основных утверждений, касающихся конечных множеств — правило суммы и правило произведения. При решении задач на перестановки используется правило умножения.
Каждое расположение элементов множества в определенном порядке называют перестановкой. Рассмотрим задачу: В турнире четверо участников. Сколькими способами могут быть распределены места между ними?
Будем рассуждать в соответствии с правилом умножения. Первое место может занять любой из четырех участников. При этом второе место может занять любой из трех оставшихся, третье любой из двух оставшихся, а на четвертом месте останется последний участник. Значит, места между участниками могут быть распределены 4 ۰ 3 ۰ 2 ۰ 1 = 24 способами. Решив задачу, мы фактически подсчитали число перестановок для множества из четырех элементов. Рассуждая точно так же, можно показать, что для множества из пяти элементов число перестановок равно 5 ۰ 4 ۰ 3 ۰ 2 ۰ 1, а для множества из десяти элементов это число равно 10 ۰ 9 ۰ 8 ۰ 7 ۰ б ۰ 5 ۰ 4 ۰ 3 ۰ 2 ۰ 1.
Вообще если множество содержит п элементов, то число перестановок равно произведению п(п – 1)(п – 2) ۰…۰ 2 ۰ 1. Множители в этом произведении можно записать в обратном порядке: 1 ۰ 2 ۰ . ۰ (п – 2)(п – 1)п.
Такие произведения бывают очень длинными и часто выражаются огромными числами. Однако в математике есть специальный символ для их обозначения. Произведение всех натуральных чисел от 1 до п обозначают п! (читают: «п факториал»). Значение выражения п! можно найти для любого натурального числа п (при этом считают, что 1! = 1).
Факториалы растут удивительно быстро. Можно понаблюдать за их изменением, рассмотрев таблицу, в которой приведены факториалы чисел от 1 до 10:
Источник
Сколькими способами можно рассадить 6 человек за столом по кругу
Добрый день.
Есть задача: Сколькими способами можно рассадить 6 человек за столом: а) в ряд; б) по кругу; в) по кругу, при условии, что места не имеют номеров?
Под а) получаю 6!=720
Под б) 6!/6=120
А вот под в) не очень понимаю. Разве будет как то отличаться от случая под буквой б)? Помогите пожалуйста.
Сколькими способами можно рассадить за круглым столом 5 мужчин и 5 женщин?
Сколькими способами можно рассадить за круглым столом 5 мужчин и 5 женщин: 1) чтобы никакие два.
Сколькими способами можно рассадить в поезде 4 человек?
1. В пассажирском поезде 9 вагонов. Сколькими способами можно рассадить в поезде 4 человек при.
Сколькими способами можно разместить 8 человек за столом, у которого стоит 8 стульев?
Сколькома способами можно разместить 8 человек за столом, у которого стоит 8 стульев?
Сколькими способами 6 человек разместиться за столом, если имеет значение, на каком месте сидеть?
3. Решить задачу, используя а) правило произведения: б) формулы комбинаторики: Сколькими способами.
Сколькими способами можно рассадить этих людей?
На скамейке сидит 14 человек, среди которых три семьи: Петренко (4 чел.), Васюки (3 чел.) и.
Сколькими способами 10 мальчиков и 10 девочек можно рассадить
Сколькими способами 10 мальчиков и 10 девочек можно рассадить за 10 парт при условии, что за одной.
Сколькими способами можно рассадить этих людей?
3)среди 12 людей есть трое знакомых. Сколькими способами можно рассадить этих людей, чтобы знакомые.
Сколькими способами группу из 30 студентов можно рассадить по 36 стульям
Прошу проверить задание. Сколькими способами группу из 30 студентов можно рассадить по 36.
Сколькими способами можно рассадить этих людей, чтобы знакомые сидели рядом?
Помогите пожалуйста с задачами. Для закрытия всех долгов не хватает только этого 1. Среди 12.
Сколькими способами можно их рассадить за 10 партами, так чтобы за одной партой не сидели 2 девочки
В классе 12 мальчиков и 8 девочек. Сколькими способами можно их рассадить за 10 партами, так чтобы.
Источник
Сколькими способами можно рассадить 6 участников за круглым столом?
Математика | 10 — 11 классы
Сколькими способами можно рассадить 6 участников за круглым столом?
1) 6 * 5 * 4 * 3 * 2 * 1 = 720 вариантов ))))))))))))))))))))))))))).
Если участников собрания рассадить по 6 человек за каждый стол, то троим не хватить месть?
Если участников собрания рассадить по 6 человек за каждый стол, то троим не хватить месть.
А если этих же участников рассадить по 9 человек за каждый стол, то два стола останутся не занятыми.
Сколько человек участвовало на собрании?
У круглого стола поставили 4 стула?
У круглого стола поставили 4 стула.
Сколькими способами можно рассадить на эти стулья : а) 4 — х детей ; б) 3 — х детей ; в) 2 — х детей.
Если участников собрания рассадить по шесть человек на каждый стол, то троим не хватит месть?
Если участников собрания рассадить по шесть человек на каждый стол, то троим не хватит месть.
А если этих же участников рассадить по девять человек за каждый стол, то два стола останутся не занятыми.
Сколько человек участвовала на собрании?
Сколькими способами могут разместиться 5 человек вокруг круглого стола?
Сколькими способами могут разместиться 5 человек вокруг круглого стола.
Если участников собрания рассадить по 6 человек за каждый стол, то троим не хватит мест?
Если участников собрания рассадить по 6 человек за каждый стол, то троим не хватит мест.
А если этих же участников рассадить по 9 человек за каждый стол, то два стола останутся не занятыми.
Сколько человек участвовало на собрании?
За круглым столом расположились 30 взрослых участников дискуссии так, что правым соседом каждой женщины был мужчина, а у половины мужчин справа сидела женщина?
За круглым столом расположились 30 взрослых участников дискуссии так, что правым соседом каждой женщины был мужчина, а у половины мужчин справа сидела женщина.
Сколько женщин сидело за круглым столом?
За круглым столом 30 участников дискуссии сели так, что правым соседом каждой женщины был мужчина, а у половины мужчин справа сидела женщина?
За круглым столом 30 участников дискуссии сели так, что правым соседом каждой женщины был мужчина, а у половины мужчин справа сидела женщина.
Сколько женщин сидело за круглым столом?
Сколькими способами можно рассадить семь человек за круглый стол?
Сколькими способами можно рассадить семь человек за круглый стол.
Сколькими способами можно рассадить 7 лиц за столом, где поставлено 7 приборов?
Сколькими способами можно рассадить 7 лиц за столом, где поставлено 7 приборов.
У круглого стола поставили 4 стула?
У круглого стола поставили 4 стула.
Сколькими способами можно рассадить на эти стулья А) 4 ребёнка Б)3 ребёнка В)2 ребёнка.
На странице вопроса Сколькими способами можно рассадить 6 участников за круглым столом? из категории Математика вы найдете ответ для уровня учащихся 10 — 11 классов. Если полученный ответ не устраивает и нужно расшить круг поиска, используйте удобную поисковую систему сайта. Можно также ознакомиться с похожими вопросами и ответами других пользователей в этой же категории или создать новый вопрос. Возможно, вам будет полезной информация, оставленная пользователями в комментариях, где можно обсудить тему с помощью обратной связи.
245км — 3, 5часов 336км — хчасов х = 336 * 3, 5 / 245 = 4, 8 часов — проедет поезд расстояние 336км 4целых это 4 часа 0, 8 * 60 = 48минут, так как 1час = 60минут 4часа 48минут.
Пропорция : 3, 5 ч — 245 км Х ч — 336 км Решение Х = 3, 5 / 245 * 336 = 4, 8 ч Ответ 4, 8 ч = 288 минут = 4 часа 48 минут.
Источник
Сколькими способами 6 человек можно посадить по кругу
За круглый стол на 9 стульев в случайном порядке рассаживаются 7 мальчиков и 2 девочки. Найдите вероятность того, что обе девочки будут сидеть рядом.
Пусть первой за стол сядет девочка, рядом с ней есть два места, на каждое из которых может сесть 8 человек, из которых только одна девочка. Таким образом вероятность, что девочки будут сидеть рядом равна
Приведём другое решение (перестановки).
Число способов рассадить 9 человек по девяти стульям равно Благоприятным является случай, когда на «первом» стуле сидит «первая» девочка, на соседнем справа сидит «вторая» девочка, а на остальных семи стульях произвольным образом рассажены мальчики. Поскольку выбрать «первую» девочку можно двумя способами, количество таких исходов равно
А так как «первым» стулом может быть любой из девяти стульев (стулья стоят по кругу), количество благоприятных исходов нужно умножить на 9. Таким образом, вероятность того, что обе девочки будут сидеть рядом, равна
Приведём другое решение (круговые перестановки).
Напомним, что число способов, которыми можно расположить n различных объектов по n расположенным по кругу местам равно (n − 1)! Поэтому посадить за круглым столом 9 детей можно 8! способами. Объединим двух девочек в пару, это можно сделать двумя способами; рассадить по кругу 7 мальчиков и эту неделимую пару можно 7! способами. Тем самым, посадить детей требуемым образом можно 2 · 7! способами, поэтому искомая вероятность равна
Рассуждая аналогично, получим, что в общем случае для n девочек и m мальчиков, сидящих девочки с девочками, а мальчики с мальчиками, количество способов занять места за круговым столом равно n!m!, а вероятность случайной рассадки требуемым образом равна
Источник
Математика — онлайн помощь
Рассмотрим множество, состоящее из n различных элементов. Требуется выбрать из них какие-нибудь k элементов и расположить эти k элементов в каком-либо порядке. Такие упорядоченные последовательности называются размещениями из n элементов по k элементов (упорядоченные – следовательно, последовательности <1,2>и <2,1>— различные размещения).
Если в последовательности нет одинаковых элементов, то говорят о размещении без повторений. Их количество
Если в последовательности допускается наличие одинаковых элементов, то говорят о размещении с повторениями. Их количество
Любое подмножество (неупорядоченное), состоящее из k элементов, называется сочетанием из n элементов по k элементов.
Различные сочетания отличаются друг от друга только самими входящими в них элементами, порядок их следования безразличен, т.е. по условию задачи подмножества <1,2>и <2,1>не различны (соединены).
Число сочетаний без повторений
.
Число сочетаний с повторениями
.
Количество способов переставить элементов в заданном множестве (количество перестановок) вычисляется по формуле
.
При решении простейших комбинаторных задач можно использовать следующую таблицу, определяющую число множеств, состоящих из k элементов, отбираемых из множества, содержащего n элементов
Выбор | Неупорядоченный | Упорядоченный |
Без повтора | ||
С повтором |
Рассмотрим разницу между сочетаниями, размещениями с повторениями, без повторений на следующих примерах.
ПРИМЕРЫ РЕШЕНИЯ ЗАДАЧ
ПРИМЕР 13.2.1 В коробке 6 шаров, пронумерованных от 1 до 6. Из коробки вынимаются друг за другом 3 шара и в этом же порядке записывают полученные цифры. Сколько трехзначных чисел можно таким образом записать?
Решение: По условию задачи подмножества <1;2;3>и <3;1;2>– различные. Повторов в подмножестве быть не может, так как шары не возвращаются в коробку.
.
ПРИМЕР 13.2.2. В коробке 6 шаров пронумерованных от 1 до 6. Из коробки вынимаются 3 шара и записывают число в порядке возрастания цифр. Сколько трехзначных чисел можно таким образом записать?
Решение: По условию задачи подмножества <1;2;3>и <3;2;1>дают число 123, т.е. не являются различными.
.
ПРИМЕР 13.2.3. Условие задачи 2.1 (шары возвращаются в коробку)
Решение: .
ПРИМЕР 13.2.4. Условие задачи 2.2 (шары возвращаются в коробку)
Решение: .
ПРИМЕР 13.2.5. Сколько различных перестановок можно составить из букв слова «комар»?
Решение: .
ПРИМЕР 13.2.6. Сколько различных перестановок можно составить из букв слова «задача»?
Решение: Если бы все шесть букв слова были различны, то число перестановок было бы 6! Но буква «а» встречается в данном слове три раза, и перестановки только этих трех букв «а» не дают новых способов расположения букв. Поэтому число перестановок букв слова «задача» будет не 6!, а в 3! раза меньше, то есть .
ПРИМЕР 13.2.7. В мастерской имеется материал 5 цветов. Поступил заказ на пошив флагов, состоящих из трех горизонтальных полос разного цвета каждый. Сколько таких различных флагов может сшить мастерская?
.
Решение: Флаги отличаются друг от друга как цветом полос, так и их порядком, поэтому разных флагов можно сделать штук.
ПРИМЕР 13.2.8. Сколькими способами можно распределить 5 учеников по 3 параллельным классам?
Решение: Составим вспомогательную таблицу
Таким образом, видно, что если для одного ученика существует 3 варианта выбора класса, то для всех 5 учеников существует способов распределения по классам.
ПРИМЕР 13.2.9. На книжной полке помещается 30 томов. Сколькими способами их можно расставить, чтобы при этом первый и второй том не стояли рядом?
Решение: Произведем рассуждения “от обратного”. Тридцать томов на одной полке можно разместить 30! способами.
.
Если 1 и 2 тома должны стоять рядом, то число вариантов расстановки сокращается до , т.к. комбинацию из 1 и 2 тома можно считать за один том, но при этом они могут стоять как (1;2) или (2;1), т.е.
,
.
Тогда искомое число способов расстановки есть
ПРИМЕР 13.2.10. Чемпионат, в котором участвуют 16 команд, проводится в два круга, т.е. каждая команда дважды встречается с любой другой. Определить, какое количество встреч следует провести.
Решение: По условию задачи из 16 команд для каждой встречи требуется отобрать 2 команды. В данном случае отбор производится без повтора и порядок отбора не важен, т.е. число вариантов — . Так как команды должны играть дважды число вариантов удваивается, т.е.
.
ПРИМЕР 13.2.11. Автомобильная мастерская имеет для окраски 10 основных цветов. Сколькими способами можно окрасить автомобиль, если смешивать от 3 до 7 основных цветов?
Решение: По условию задачи отбор цветов для окраски производится без повтора и порядок отбора не важен, т.е. число вариантов зависит лишь от числа отбираемых для окраски цветов — . Поэтому общее число вариантов есть
.
ПРИМЕР 13.2.12. Турист прошел маршрут из пункта A в пункт B, из B в C и вернулся обратно. Сколько вариантов маршрута существует, если из пункта A в пункт B ведут 3 дороги, а из B в C — 4 и нельзя возвращаться той дорогой, по которой уже прошел?
Решение: Составим схему.
Из рисунка видно, что вариантов маршрута из А в B существует 3, и из B в C – 4, т.е. всего маршрутов .
На обратном пути вариантов маршрута из С в B существует 3 (один уже пройден), и из B в А – 2, т.е. всего возможных обратных маршрутов осталось . Тогда всего вариантов маршрута
.
ПРИМЕР 13.2.13. Двенадцати ученикам выданы два варианта контрольной работы. Сколькими способами можно посадить учеников в два ряда по 6 человек, чтобы у сидящих рядом не было одинаковых вариантов, а у сидящих друг за другом был один и тот же вариант?
Решение: Рассуждения произведем несколькими способами
I способ) Первоначально 12 учеников разбивают на 2 группы по 6 человек. Это можно сделать способами.
Затем они могут распределиться по своим рядам согласно схеме
.
Поэтому всего способов распределения учеников будет .
II способ) Первоначально 12 учеников запускают в класс, указывая место, где каждый должен сидеть, например “второй ряд, третье место”. Так как посадочных мест также 12, то всего вариантов распределения 12!
Варианты контрольной работы могут распределиться
“I вариант – I ряд, II вариант – II ряд”
“II вариант – I ряд, I вариант – II ряд”,
Таким образом, всего способов распределения учеников будет .
По приведенным решениям видно, что результаты решений совпадают.
ПРИМЕР 13.2.14. Сколько существует вариантов расположения шести гостей за круглым шестиместным столом?
Решение: Эта задача имеет разные решения и, соответственно разные ответы – в зависимости от того, что понимать под различным расположением гостей за столом. Поэтому исследуем возможные варианты.
Если считать, что нам важно, кто сидит на каком стуле, то это простая задача на перестановки и, следовательно, всего вариантов .
Если же важно не то, кто какой стул занял, а то, кто рядом с кем сидит, то требуется рассмотреть варианты взаимного расположения гостей. В таком случае, расположения гостей, получаемые одно из другого при повороте гостей вокруг стола, фактически являются одинаковыми (смотри рисунок).
Очевидно, что для любого расположения гостей таких одинаковых вариантов, получаемых друг из друга поворотом, — шесть. Тогда общее число вариантов уменьшается в шесть раз и их остается .
В случае же, когда нас интересует только взаимное расположение гостей, то одинаковыми можно считать и такие симметричные расположения, при которых у каждого гостя остаются те же соседи за столом, только левый и правый меняются местами (смотри рисунок).
В такой постановке вопроса общее число различных вариантов расположений гостей уменьшается вдвое и составляет 60.
Отметим, что каждое решение будет считаться правильным при соответствующей постановке задачи.
ПРИМЕР 13.2.15. Семнадцать студентов сдали экзамены по 4 предметам только на “хорошо” и “отлично”. Верно ли утверждение, что хотя бы у двух из них оценки по экзаменационным предметам совпадают?
Решение: Очевидно, что в данном случае речь идет о возможных вариантах вида
Предмет | 1 | 2 | 3 | 4 |
Студент 1 | 4 | 4 | 5 | 5 |
Студент 2 | 5 | 4 | 4 | 5 |
Студент 3 | 5 | 5 | 5 | 5 |
… | … | … | … | … |
Студент 17 | 4 | 4 | 5 | 4 |
Данный пример можно решить способом, изложенным в примере 13.1.8., и получить количество вариантов . Приведем другой наглядный способ решения, использующий так называемое “дерево решений”,который представляет все варианты (16 штук) получения экзаменационных оценок.
.
По “дереву решений” видно, что 16 студентов могут сдать экзамены только на “хорошо” и “отлично” так, что их результаты будут отличаться, но если студентов 17, хотя бы одно повторение обязательно будет.
При решении задач комбинаторики используются следующие правила.
Если некоторый объект A может быть выбран из совокупности объектов m способами, а другой объект B может быть выбран nспособами, то:
Правило суммы: выбрать либо A, либо B можно m+n способами.
Правило произведения. Пара объектов (A,B) в указанном порядке может быть выбрана способами.
Примеры и задачи для самостоятельного решения
Решить комбинаторную задачу.
13.2.1.1. В группе 25 студентов. Сколькими способами можно выбрать старосту, заместителя старосты и профорга?
13.2.1.2. В группе 25 студентов. Сколькими способами можно выбрать актив группы, состоящий из старосты, заместителя старосты и профорга?
13.2.1.3. Сколькими способами можно составить список из 10 человек?
13.2.1.4. Сколькими способами из 15 рабочих можно создать бригады по 5 человек в каждой?
13.2.1.5. Буквы азбуки Морзе образуются как последовательности точек и тире. Сколько букв можно составить, используя для кодировки каждой из букв: а) ровно 5 символов? б) не более пяти символов?
13.2.1.6. Кости для игры в домино метятся двумя цифрами. Кости симметричны, и поэтому порядок чисел не существенен. Сколько различных костей можно образовать, используя числа 0,1,2,3,4,5,6?
13.2.1.7. Сколько различных звукосочетаний можно взять на десяти выбранных клавишах рояля, если каждое звукосочетание может содержать от трех до десяти различных звуков?
13.2.1.8. В вазе стоят 10 красных и 5 розовых гвоздик. Сколькими способами можно выбрать из вазы пять гвоздик одного цвета?
13.2.1.9. В некоторых странах номера трамвайных маршрутов обозначаются двумя цветными фонарями. Какое количество различных маршрутов можно обозначить, если использовать фонари восьми цветов?
13.2.1.10. Команда компьютера записывается в виде набора из восьми цифровых знаков – нулей и единиц. Каково максимальное количество различных команд?
13.2.1.11. Десять групп занимаются в десяти расположенных подряд аудиториях. Сколько существует вариантов расписания, при которых группы 1 и 2 находились бы в соседних аудиториях?
13.2.1.12. Два почтальона должны разнести 10 писем по 10 адресам. Сколькими способами они могут распределить работу?
13.2.1.13. Замок открывается только в том случае, если набран определенный трехзначный номер. Попытка состоит в том, что набирают наугад три цифры из заданных пяти. Угадать номер удалось только на последней из всех возможных попыток. Сколько попыток предшествовало удачной?
13.2.1.14. Номер автомобильного прицепа состоит из двух букв и четырех цифр. Сколько различных номеров можно составить, используя 30 букв и 10 цифр?
13.2.1.15. У одного студента есть 7 DVD дисков, а у другого – 9 дисков. Сколькими способами они могут обменять 3 диска одного на 3 диска другого?
13.2.1.16. На вершину горы ведут 7 дорог. Сколькими способами турист может два раза подняться на гору и спуститься с нее, если по одной и той же дороге нельзя проходить дважды?
13.2.1.17. У ювелира было 9 разных драгоценных камней: сапфир, рубин, топаз и т.д. Ювелир планировал изготовить браслет для часов, однако три камня было украдено. Насколько меньше вариантов браслета он может изготовить по сравнению с первоначальными планами?
13.2.1.18. В поезд метро на начальной станции вошли 10 пассажиров. Сколькими способами могут выйти все пассажиры на последующих 6 станциях?
13.2.1.19. За одним столом надо рассадить 5 мальчиков и 5 девочек так, чтобы не было двух рядом сидящих мальчиков и двух рядом сидящих девочек. Сколькими способами это можно сделать?
13.2.1.20. В классе 25 учеников. Верно ли утверждение, что, по крайней мере, у трех из них день рождения в один и тот же месяц?
13.2.1.21. На участке железной дороги расположено 25 станций с билетной кассой в каждой. Касса каждой станции продает билеты до любой другой станции, притом в обоих направлениях. Сколько различных вариантов билетов можно выдать на этом участке?
13.2.1.22. На официальном приеме 50 человек обменялись рукопожатиями. Сколько было сделано рукопожатий?
13.2.1.23. Сколько диагоналей у выпуклого двадцатиугольника?
Уважаемые студенты
На нашем сайте можно получить помощь по всем разделам математики и другим предметам:
✔ Решение задач
✔ Выполнение учебных работ
✔ Помощь на экзаменах
Источник