Система уравнений для 7 класса способом сложения

Содержание
  1. Решение системы уравнений методом сложения
  2. Решение легких задач с применением способа сложения
  3. Задача № 1
  4. Задача № 2
  5. Важные моменты
  6. Решение легких задач с применением метода вычитания
  7. Задача № 1
  8. Задача № 2
  9. Нюансы решения
  10. Решение задач методом домножения на коэффициент
  11. Пример № 1
  12. Пример № 2
  13. Нюансы решения
  14. Решение задач с дробными числами
  15. Пример № 1
  16. Пример № 2
  17. Нюансы решения
  18. Решение сложных систем уравнений
  19. Система № 1
  20. Система № 2
  21. Презентация по алгебре для 7 класса, «Решение систем уравнений. Способ сложения»
  22. Дистанционное обучение как современный формат преподавания
  23. Методика обучения математике в основной и средней школе в условиях реализации ФГОС ОО
  24. Математика: теория и методика преподавания в образовательной организации
  25. Оставьте свой комментарий
  26. Безлимитный доступ к занятиям с онлайн-репетиторами
  27. Подарочные сертификаты

Решение системы уравнений методом сложения

23 октября 2015

Этим видео я начинаю цикл уроков, посвящённых системам уравнений. Сегодня мы поговорим о решении систем линейных уравнений методом сложения — это один из самых простых способов, но одновременно и один из самых эффективных.

Способ сложения состоит из трёх простых шагов:

  1. Посмотреть на систему и выбрать переменную, у которой в каждом уравнении стоят одинаковые (либо противоположные) коэффициенты;
  2. Выполнить алгебраическое вычитание (для противоположных чисел — сложение) уравнений друг из друга, после чего привести подобные слагаемые;
  3. Решить новое уравнение, получившееся после второго шага.

Если всё сделать правильно, то на выходе мы получим одно-единственное уравнение с одной переменной — решить его не составит труда. Затем останется лишь подставить найденный корень в исходную система и получить окончательный ответ.

Однако на практике всё не так просто. Причин тому несколько:

  • Решение уравнений способом сложения подразумевает, что во всех строчках должны присутствовать переменные с одинаковыми/противоположными коэффициентами. А что делать, если это требование не выполняется?
  • Далеко не всегда после сложения/вычитания уравнений указанным способом мы получим красивую конструкцию, которая легко решается. Возможно ли как-то упростить выкладки и ускорить вычисления?

Чтобы получить ответ на эти вопросы, а заодно разобраться с несколькими дополнительными тонкостями, на которых «заваливаются» многие ученики, смотрите мой видеоурок:

Этим уроком мы начинаем цикл лекций, посвященный системам уравнений. А начнем мы из самых простых из них, а именно из те, которые содержат два уравнения и две переменных. Каждое из них будет являться линейным.

Системы — это материал 7-го класса, но этот урок также будет полезен старшеклассникам, которые хотят освежить свои знания в этой теме.

Вообще, существует два метода решения подобных систем:

  1. Метод сложения;
  2. Метод выражения одной переменной через другую.

Сегодня мы займемся именно первым методом — будем применять способ вычитания и сложения. Но для этого нужно понимать следующий факт: как только у вас есть два или более уравнений, вы вправе взять любые два из них и сложить друг с другом. Складываются они почленно, т.е. «иксы» складываются с «иксами» и приводятся подобные, «игреки» с «игреками» — вновь приводятся подобные, а то, что стоит справа от знака равенства, также складывается друг с другом, и там тоже приводятся подобные.

Результатами подобных махинаций будет новое уравнение, которое, если и имеет корни, то они обязательно будут находиться среди корней исходного уравнения. Поэтому наша задача — сделать вычитание или сложение таким образом, чтобы или $x$, или $y$ исчез.

Как этого добиться и каким инструментом для этого пользоваться — об этом мы сейчас и поговорим.

Решение легких задач с применением способа сложения

Итак, учимся применять метод сложения на примере двух простейших выражений.

Задача № 1

Заметим, что у $y$ коэффициент в первом уравнении $-4$, а во втором — $+4$. Они взаимно противоположны, поэтому логично предположить, что если мы их сложим, то в полученной сумме «игреки» взаимно уничтожатся. Складываем и получаем:

Решаем простейшую конструкцию:

Прекрасно, мы нашли «икс». Что теперь с ним делать? Мы вправе подставить его в любое из уравнений. Подставим в первое:

\[-4y=12\left| :\left( -4 \right) \right.\]

Ответ: $\left( 2;-3 \right)$.

Задача № 2

Здесь полностью аналогичная ситуация, только уже с «иксами». Сложим их:

Мы получили простейшее линейное уравнение, давайте решим его:

Теперь давайте найдем $x$:

Ответ: $\left( -3;3 \right)$.

Важные моменты

Итак, только что мы решили две простейших системы линейных уравнений методом сложения. Еще раз ключевые моменты:

  1. Если есть противоположные коэффициенты при одной из переменных, то необходимо сложить все переменные в уравнении. В этом случае одна из них уничтожится.
  2. Найденную переменную подставляем в любое из уравнений системы, чтобы найти вторую.
  3. Окончательную запись ответа можно представить по-разному. Например, так — $x=. y=. $, или в виде координаты точек — $\left( . ;. \right)$. Второй вариант предпочтительней. Главное помнить, что первой координатой идет $x$, а второй — $y$.
  4. Правило записывать ответ в виде координат точки применимо не всегда. Например, его нельзя использовать, когда в роли переменных выступают не $x$ и $y$, а, к примеру, $a$ и $b$.
Читайте также:  Способ передачи инфекции через промежуточный объект руки предметы

В следующих задачах мы рассмотрим прием вычитания, когда коэффициенты не противоположны.

Решение легких задач с применением метода вычитания

Задача № 1

Заметим, что противоположных коэффициентов здесь нет, однако есть одинаковые. Поэтому вычитаем из первого уравнения второе:

\[10x-\left( -6x \right)-3y-\left( -3y \right)=5-\left( -27 \right)\]

\[16x=32\left| :16 \right.\]

Теперь подставляем значение $x$ в любое из уравнений системы. Давайте в первое:

Ответ: $\left( 2;5 \right)$.

Задача № 2

Мы снова видим одинаковый коэффициент $5$ при $x$ в первом и во втором уравнении. Поэтому логично предположить, что нужно из первого уравнения вычесть второе:

\[6y=-18\left| :6 \right.\]

Одну переменную мы вычислили. Теперь давайте найдем вторую, например, подставив значение $y$ во вторую конструкцию:

\[5x-2\cdot \left( -3 \right)=-4\]

\[5x=-10\left| :5 \right.\]

Ответ: $\left( -3;-2 \right)$.

Нюансы решения

Итак, что мы видим? По существу, схема ничем не отличается от решения предыдущих систем. Отличие только в том, что мы уравнения не складываем, а вычитаем. Мы проводим алгебраическое вычитание.

Другими словами, как только вы видите систему, состоящую из двух уравнений с двумя неизвестными, первое, на что вам необходимо посмотреть — это на коэффициенты. Если они где-либо одинаковые, уравнения вычитаются, а если они противоположные — применяется метод сложения. Всегда это делается для того, чтобы одна из них исчезла, и в итогом уравнении, которая осталась после вычитания, осталась бы только одна переменная.

Разумеется, это еще не все. Сейчас мы рассмотрим системы, в которых уравнения вообще несогласованны. Т.е. нет в них таких переменных, которые были бы либо одинаковые, либо противоположные. В этом случае для решения таких систем применяется дополнительный прием, а именно домножение каждого из уравнений на специальный коэффициент. Как найти его и как решать вообще такие системы, сейчас мы об этом и поговорим.

Решение задач методом домножения на коэффициент

Пример № 1

Мы видим, что ни при $x$, ни при $y$ коэффициенты не только не взаимно противоположны, но и вообще никак не соотносятся с другим уравнением. Эти коэффициенты никак не исчезнут, даже если мы сложим или вычтем уравнения друг из друга. Поэтому необходимо применить домножение. Давайте попытаемся избавиться от переменной $y$. Для этого мы домножим первое уравнение на коэффициент при $y$ из второго уравнения, а второе уравнение — при $y$ из первого уравнения, при этом не трогая знак. Умножаем и получаем новую систему:

Смотрим на нее: при $y$ противоположные коэффициенты. В такой ситуации необходимо применять метод сложения. Сложим:

Теперь необходимо найти $y$. Для этого подставим $x$ в первое выражение:

\[-9y=18\left| :\left( -9 \right) \right.\]

Ответ: $\left( 4;-2 \right)$.

Пример № 2

Вновь коэффициенты ни при одной из переменных не согласованы. Домножим на коэффициенты при $y$:

\[\left\< \begin& 11x+4y=-18\left| 6 \right. \\& 13x-6y=-32\left| 4 \right. \\\end \right.\]

Наша новая система равносильна предыдущей, однако коэффициенты при $y$ являются взаимно противоположными, и поэтому здесь легко применить метод сложения:

Теперь найдем $y$, подставив $x$ в первое уравнение:

\[11\cdot \left( -2 \right)+4y=-18\]

Ответ: $\left( -2;1 \right)$.

Нюансы решения

Ключевое правило здесь следующее: всегда умножаем лишь на положительные числа — это избавит вас от глупых и обидных ошибок, связанных с изменением знаков. А вообще, схема решения довольно проста:

  1. Смотрим на систему и анализируем каждое уравнение.
  2. Если мы видим, что ни при $y$, ни при $x$ коэффициенты не согласованы, т.е. они не являются ни равными, ни противоположными, то делаем следующее: выбираем переменную, от которой нужно избавиться, а затем смотрим на коэффициенты при этих уравнениях. Если первое уравнение домножим на коэффициент из второго, а второе, соответственное, домножим на коэффициент из первого, то в итоге мы получим систему, которая полностью равносильна предыдущей, и коэффициенты при $y$ будут согласованы. Все наши действия или преобразования направлены лишь на то, чтобы получить одну переменную в одном уравнении.
  3. Находим одну переменную.
  4. Подставляем найденную переменную в одно из двух уравнений системы и находим вторую.
  5. Записываем ответ в виде координаты точек, если у нас переменные $x$ и $y$.
Читайте также:  Что является решением систем уравнений графическим способом

Но даже в таком нехитром алгоритме есть свои тонкости, например, коэффициенты при $x$ или $y$ могут быть дробями и прочими «некрасивыми» числами. Эти случаи мы сейчас рассмотрим отдельно, потому что в них можно действовать несколько иначе, чем по стандартному алгоритму.

Решение задач с дробными числами

Пример № 1

Для начала заметим, что во втором уравнении присутствуют дроби. Но заметим, что можно разделить $4$ на $0,8$. Получим $5$. Давайте второе уравнение домножим на $5$:

Вычитаем уравнения друг из друга:

$n$ мы нашли, теперь посчитаем $m$:

\[4m-3\cdot \left( -4 \right)=32\]

Пример № 2

\[\left\< \begin& 2,5p+1,5k=-13\left| 4 \right. \\& 2p-5k=2\left| 5 \right. \\\end \right.\]

Здесь, как и в предыдущей системе, присутствуют дробные коэффициенты, однако ни при одной из переменных коэффициенты в целое число раз друг в друга не укладываются. Поэтому используем стандартный алгоритм. Избавится от $p$:

Применяем метод вычитания:

Давайте найдем $p$, подставив $k$ во вторую конструкцию:

\[2p-5\cdot \left( -2 \right)=2\]

\[2p-5\cdot \left( -2 \right)=2\]

Нюансы решения

Вот и вся оптимизация. В первом уравнении мы не стали домножать вообще ни на что, а второе уравнение домножили на $5$. В итоге мы получили согласованное и даже одинаковое уравнение при первой переменной. Во второй системе мы действовали по стандартному алгоритму.

Но как найти числа, на которые необходимо домножать уравнения? Ведь если домножать на дробные числа, мы получим новые дроби. Поэтому дроби необходимо домножить на число, которое бы дало новое целое число, а уже после этого домножать переменные на коэффициенты, следуя стандартному алгоритму.

В заключение хотел бы обратить ваше внимание на формат записи ответа. Как я уже и говорил, поскольку здесь у нас тут не $x$ и $y$, а другие значения, мы пользуемся нестандартной записью вида:

Решение сложных систем уравнений

В качестве заключительного аккорда к сегодняшнему видеоуроку давайте рассмотрим пару действительно сложных систем. Их сложность будет состоять в том, что в них и слева, и справа будут стоять переменные. Поэтому для их решения нам придется применять предварительную обработку.

Система № 1

\[\left\< \begin& 3\left( 2x-y \right)+5=-2\left( x+3y \right)+4 \\& 6\left( y+1 \right)-1=5\left( 2x-1 \right)+8 \\\end \right.\]

Каждое уравнение несет в себе определенную сложность. Поэтому с каждым выражением давайте поступим как с обычной линейной конструкцией.

\[3\left( 2x-y \right)+5=-2\left( x+3y \right)+4\]

\[6\left( y+1 \right)-1=5\left( 2x-1 \right)+8\]

Итого мы получим окончательную систему, которая равносильна исходной:

Посмотрим на коэффициенты при $y$: $3$ укладывается в $6$ два раза, поэтому домножим первое уравнение на $2$:

Коэффициенты при $y$ теперь равны, поэтому вычитаем из первого уравнения второе: $$

Теперь найдем $y$:

Ответ: $\left( 0;-\frac<1> <3>\right)$

Система № 2

\[\left\< \begin& 4\left( a-3b \right)-2a=3\left( b+4 \right)-11 \\& -3\left( b-2a \right)-12=2\left( a-5 \right)+b \\\end \right.\]

Преобразуем первое выражение:

\[4\left( a-3b \right)-2a=3\left( b+4 \right)-11\]

Разбираемся со вторым:

\[-3\left( b-2a \right)-12=2\left( a-5 \right)+b\]

Итого, наша первоначальная система примет такой вид:

Посмотрев на коэффициенты при $a$, мы видим, что первое уравнение нужно домножить на $2$:

Вычитаем из первой конструкции вторую:

Теперь найдем $a$:

Ответ: $\left( a=\frac<1><2>;b=0 \right)$.

Вот и все. Надеюсь, этот видеоурок поможет вам разобраться в этой нелегкой теме, а именно в решении систем простых линейных уравнений. Дальше еще будет много уроков, посвященных этой теме: мы разберем более сложные примеры, где переменных будет больше, а сами уравнения уже будут нелинейными. До новых встреч!

Источник

Презентация по алгебре для 7 класса, «Решение систем уравнений. Способ сложения»

Описание презентации по отдельным слайдам:

ПРАВИТЕЛЬСТВО САНКТ-ПЕТЕРБУРГА КОМИТЕТ ПО ОБРАЗОВАНИЮ Государственное бюджетное общеобразовательное учреждение средняя общеобразовательная школа № 518 Выборгского района Санкт-Петербурга Решение систем уравнений. Способ сложения. (алгебра, 7 класс) Клюева Татьяна Николаевна учитель математики klueva-518@yandex.ru 2015 год

Устная работа Дано уравнение 5х – 2у =10 Выразите переменную х через у Выразите переменную у через х Является ли пара чисел (1;1) решением системы уравнений 3х – 4у = -1 х + 4у = 5 5х – у = 5 у – 5х = — 5

Читайте также:  Найдите корни уравнения способом перебора пар делителей числа

Назовите все пары натуральных чисел, являющихся решениями уравнения х + у = 4 Сколько таких решений имеет данное уравнение? А сколько может быть решений, если числа целые? Приведите примеры.

Решите уравнения: Х + 3 = 10 Х + 5 = 12 А теперь сложим два этих равенства почленно: Х + 3 = 10 + Х + 5 = 12 2х + 8 = 22. Решим и найдём х 2х = 14 Х = 7 Какой вывод можно сделать?

Решим систему уравнений 3х+2у = 8 4х – 2у = 6 Сложим почленно оба уравнения системы Получилось 7х = 14, х = 2 Подставим х = 2 в любое из уравнений системы: 3х + 2у = 8 Х =2, 3∙2 + 2у = 8, 6 + 2у = 8 2у = 2, у = 1 Ответ: (2;1)

Решение системы способом сложения ||·(-3) + ____________ Ответ: (3; — 10) 7х+2у=1, 17х+6у=-9; Уравняем модули коэффи- циентов перед у -21х-6у=-3, 17х+6у=-9; — 4х = — 12, 7х+2у=1; Сложим уравне- ния почленно Решим уравнение х=3, 7х+2у=1; Подставим х=3, 7·3+2у=1; Решим уравнение х=3, 21+2у=1; х=3, 2у=-20; х=3, у=-10.

Способ сложения (алгоритм) Уравнять модули коэффициентов при какой-нибудь переменной Сложить почленно уравнения системы Составить новую систему: одно уравнение новое, другое — одно из старых Решить новое уравнение и найти значение одной переменной Подставить значение найденной переменной в старое уравнение и найти значение другой переменной Записать ответ: ( х, у).

Устная работа Дано уравнение с двумя переменными х – у = 3. Какие пары чисел являются его решением: (5; -2); (5; 2) (0; — 4); (0; — 3) Какая из пар чисел (- 1; 3), (0;1) является решением системы уравнений х- 5у = -5 3 х + у = 1

Каким способом удобнее решать систему уравнений: 2х – 5у = 9 — 2х +4У = — 7 Х – У = 5 2Х – 3У = 0 Найдите решение каждой системы. 1. (- 0,5; -2) 2. (15; 10)

Решение системы способом сравнения Приравняем выражения для у 7х — 1=2х+4, 7х — 2х=4+1, 5х=5, х=1. Решим уравнение Ответ: (1; 6) у — 2х=4, 7х — у =1; Выразим у через х у=2х+4, у= 7х — 1 у=2х+4, х=1; Подставим у=2·1+4, х=1; у=6, х=1.

Способ сравнения (алгоритм) Выразить у через х (или х через у) в каждом уравнении Приравнять выражения, полученные для одноимённых переменных Решить полученное уравнение и найти значение одной переменной Подставить значение найденной переменной в одно из выражений для другой переменной и найти её значение Записать ответ: х=…; у=… .

Итоги урока: Что вы сегодня узнали нового? Что вы повторили? В чем испытали затруднения? Что получилось хорошо? Что нужно исправить?

Курс повышения квалификации

Дистанционное обучение как современный формат преподавания

  • Сейчас обучается 801 человек из 76 регионов

Курс повышения квалификации

Методика обучения математике в основной и средней школе в условиях реализации ФГОС ОО

  • Сейчас обучается 283 человека из 69 регионов

Курс профессиональной переподготовки

Математика: теория и методика преподавания в образовательной организации

  • Сейчас обучается 605 человек из 75 регионов

Ищем педагогов в команду «Инфоурок»

Номер материала: ДВ-142411

Международная дистанционная олимпиада Осень 2021

Не нашли то что искали?

Вам будут интересны эти курсы:

Оставьте свой комментарий

Авторизуйтесь, чтобы задавать вопросы.

Безлимитный доступ к занятиям с онлайн-репетиторами

Выгоднее, чем оплачивать каждое занятие отдельно

В Минпросвещения предложили организовать телемосты для школьников России и Узбекистана

Время чтения: 1 минута

Минпросвещения разрабатывает образовательный минимум для подготовки педагогов

Время чтения: 2 минуты

Рособрнадзор откажется от ОС Windows при проведении ЕГЭ до конца 2024 года

Время чтения: 1 минута

Минпросвещения будет стремиться к унификации школьных учебников в России

Время чтения: 1 минута

В Северной Осетии организовали бесплатные онлайн-курсы по подготовке к ЕГЭ

Время чтения: 1 минута

В МГУ разрабатывают школьные учебники с дополненной реальностью

Время чтения: 2 минуты

Подарочные сертификаты

Ответственность за разрешение любых спорных моментов, касающихся самих материалов и их содержания, берут на себя пользователи, разместившие материал на сайте. Однако администрация сайта готова оказать всяческую поддержку в решении любых вопросов, связанных с работой и содержанием сайта. Если Вы заметили, что на данном сайте незаконно используются материалы, сообщите об этом администрации сайта через форму обратной связи.

Все материалы, размещенные на сайте, созданы авторами сайта либо размещены пользователями сайта и представлены на сайте исключительно для ознакомления. Авторские права на материалы принадлежат их законным авторам. Частичное или полное копирование материалов сайта без письменного разрешения администрации сайта запрещено! Мнение администрации может не совпадать с точкой зрения авторов.

Источник

Оцените статью
Разные способы