Синхронный двигатель устройство принцип действия способы пуска

Методы запуска синхронных электродвигателей

Конструктивное и техническое построение синхронных электродвигателей обуславливает особенности в их функционировании и использовании. Одно из основных отличий машин этого типа состоит в невозможности их запуска при подключении напрямую к питающей сети.

Синхронные двигатели, также как и асинхронные машины, относятся к электроприводам переменного тока, преобразующим электроэнергию в механическое перемещение вала. Ввиду иного принципа действия существует ряд обязательных условий для корректной работы и эксплуатации. Одним из таких требований является запуск электрооборудования.

Назначение и конструктивное исполнение

Прежде чем перейти к подробному рассмотрению процесса запуска синхронного двигателя (СД) не лишним будет кратко повторить основные аспекты теории. Что такое СД, как взаимодействуют его элементы, какие виды бывают и почему этот тип эл/приводов так называют. После этого можно рассмотреть способы пуска.

Синхронный двигатель (СД) – электрооборудование, работа которого обеспечивается электродвижущей силой, возникающей при взаимодействии магнитных полей статорного и роторного механизма. Этот принцип является основополагающим для конструирования электромоторов разных видов. Несмотря на единый подход, приводное оборудование имеет свои отличия.

Главная особенность заключается в конструкции подвижного механизма и принципе его вращения. В зависимости от требуемой мощности ротор может:

  • содержать постоянные магниты и быть инициатором магнитоэлектрического возбуждения;
  • представлять собой электромагниты, инициирующие электромагнитное возбуждение.

Первый вариант применяется для электромашин небольшой мощности. Постоянные магниты изготавливаются из магнитотвердых материалов, способных сохранять состояние намагниченности. Они могут иметь как встроенное, так и поверхностное расположение на роторе.

Второй вид исполнения роторного блока предполагает устройство ферромагнитного сердечника с электрообмоткой. При нахождении под напряжением такая система является источником магнитного потока, взаимодействующего с полем статора.

Определение синхронизма, то есть одинаковости, основано на равенстве частоты оборотов ротора и магнитного поля статора. В этом состоит ключевое отличие принципа действия электрооборудования, определяющее его технические возможности, особенности эксплуатации и область применения. Этот же фактор напрямую влияет на пуск синхронных двигателей.

Аспекты запуска

Принцип работы СД накладывает ряд требований, без выполнения которых не только плавный пуск, но и сам запуск синхронного эл/мотора невозможен. В СД вращающееся поле создается трехфазным током в цепях статора. При этом мощность, развиваемая на валу электродвигателя, компенсируется мощностью, поступающей из питающей сети. То есть взаимодействием тока статорного устройства с полем роторного механизма инициируется возникновение крутящего момента.

Как уже упоминалось, скорости ротора и поля статорного узла синхронны. При возникновении разницы в какой-то период времени полюса роторно-статорного механизма расположатся друг напротив друга. В результате магнитная связь нарушится, поскольку одноименные полюса будут отталкиваться. Ротор перестанет испытывать действие крутящего момента и остановится. Поэтому обеспечение одновременности вращения для синхронного двигателя является основополагающим условием его функционирования.

Но осуществление самостоятельного пуска в работу с прямым сетевым подключением невозможен. Роторный механизм по причине своей инерционности не способен быстро достичь частоты поля статора, тогда как вращение последнего устанавливается одновременно с подключением к сети электропитания. Поэтому между полюсами возбужденного роторного узла и вращающегося поля устойчивая связь, создающая вращающий момент, не возникает.

Методы включения

Исходя из того, что прямой пуск невозможен, включение в рабочий процесс синхронного двигателя осуществляется с выполнением дополнительных мероприятий. Вне зависимости от способов пуска в действие электропривода суть каждого заключается в предварительном приведении подвижной части в движение с оборотами, близкими к частоте основного поля.

При пуске поток настолько медленно перемещается относительно магнитных центров крутящегося вала, что при подключении возбуждающей электрообмотки к источнику питания между роторными полюсами и полем статора устанавливается магнитная связь. Именно она обеспечивает возникновение одинакового электромагнитного момента. Под его действием вал электромотора втягивается в синхронизм.

Существуют несколько способов пуска синхронных двигателей. Практическое применение получили три из них:

  • посредством вспомогательного электрооборудования;
  • асинхронный, в том числе автотрансформаторный и реакторный пуск;
  • частотный пуск синхронного двигателя.

Каждая схема пуска синхронного двигателя имеет свои достоинства и недостатки относительно сложности конструктивного и технического исполнения, финансовых затрат, габаритов приводных узлов. Поэтому там, где оптимальным будет, например, реакторный пуск, более дорогостоящий частотный разумнее не применять. Какой способ станет оптимальным, зависит от множества факторов.

Пуск и остановка синхронного двигателя должны выполняться с соблюдением определенной последовательности действий и условий. Поэтому для снижения риска выхода из строя электропривода на старте предусматривается система защиты синхронного двигателя от затянувшегося включения. А на стадии остановки соблюдают следующий алгоритм:

  • снижают ток возбуждения до величины равной минимальным токовым параметрам статора;
  • отключают статорный узел;
  • размыкают возбуждающую электроцепь.

Отклонение от этой последовательности чревато скачком токовых величин в статоре, перенапряжениям и, как следствие, нарушением целостности изоляции.

Старт при помощи вспомогательного оборудования

Пуск в ход синхронного двигателя с дополнительным приводом аналогичен процессу включения синхронного генератора на параллельную работу. Фактически запуск осуществляется с помощью вспомогательного (разгонного) электромотора. При этом вал возбужденного электродвигателя приводится во вращение, разгоняется до требуемой частоты и через синхронизирующее устройство подключается к электросети. Затем вспомогательный привод отключается.

Читайте также:  Способы добычи огня с помощью трения

Подобный способ пуска предусматривает использование машины значительно меньшей мощности, составляющей 5-15% от мощности СД. Применение пускового электропривода большей несущей способности, достаточной для разгона нагруженного мотора, нерационально с точки зрения громоздкости и экономичности. Поэтому этим методом осуществляется пуск эл/двигателей или без нагрузки или при ее незначительной величине.

Процесс пуска синхронного двигателя выполняется асинхронным мотором с фазным ротором с числом полюсов на два меньше, по сравнению с их количеством у СД. Это необходимо для разгона вала приводимого механизма до требуемых оборотов. Регулирование скорости асинхронной машины обеспечивают регулировочным реостатом. На практике этот способ пуска применяют только для мощных машин, т.к. такой тип привода для моторов, например, 6кв не рационален.

Асинхронный запуск

Наиболее распространенным способом пуска является метод с использованием пусковых короткозамкнутых (демпферных) электроповодников, расположенных в пазах полюсных элементов. Электрообмотки выполнены в виде латунных или металлических стержней, которые с двух сторон замыкают медными кольцами (на рисунке позиция «б»).

При пуске обмотку возбуждения (ОВ) замыкают на резистор, а цепь статора подключают к сети электропитания (поз. «а»). Вращающееся поле статорного устройства индуцирует в стержнях ЭДС, вследствие чего в них возникают токи. При их взаимодействии с магнитным потоком статора на каждый стержень действует электромагнитная сила Fэм, вызывающая вращение.

После достижения предсинхронной скорости, ОВ подключается к источнику постоянного питания. Образующийся момент разгоняет ротор электродвигателя до синхронизма. В это время в пусковой цепи больше не наводится ЭДС, поэтому асинхронный момент равен нулю. Затем демпферная КЗ-электрообмотка осуществляет лишь успокоительную функцию, ограничивая возможные колебания вала.

Процесс пуска синхронного двигателя должен производиться при замкнутой ОВ на активное электросопротивление, величина которого должна быть ориентировочно в десятикратном размере больше электросопротивления возбуждающей электроцепи. При этом замыкание ОВ накоротко в период разгона нежелательно, поскольку на роторе формируется замкнутый контур, создающий асинхронный момент. При половинной предсинхронной скорости, момент превращается в тормозящий и происходит определенное торможение синхронного двигателя. Имеет место, так называемый, «провал» в моментной величине, значительно снижающий пусковые качества СД.

Существуют и другие ограничения и особенности пуска с использованием КЗ-обмоток. Это связано с возникновением на старте большого пускового тока. В связи с этим СД подключаются к сети переменного тока только при ее соответствующей мощности, выдерживающей пяти- и семикратные превышения токовых нагрузок относительно номинальных значений эл/мотора. При недостаточной мощности электросети для ограничения скачков тока включение в работу осуществляется с помощью пониженного напряжения. Такие способы пуска носят название автотрансформаторный или реакторный пуск.

Реакторы и автотрансформаторы обеспечивают принудительное снижение быстроты нарастания тока и его величины в рабочих обмотках. Реакторный пуск предусматривает установку реакторов в каждую цепь питания фазной электроцепи СД. В связи с этим токовые значения не вырастают скачкообразно и включение получается более плавным, чем прямой пуск. При разгоне электрооборудования до предсинхронных оборотов выключатель К1 выводит индуктивный компонент из электроцепи и эл/привод работает в штатном режиме.

Частотное включение

Частотный пуск синхронного двигателя выполняется посредством пониженного напряжения с небольшой токовой частотой. Это возможно при наличии источника питания, способного регулировать частоту под требуемые параметры. В этом случае скорость магнитного потока также будет невелика, и полюса роторного узла будут вращаться вместе с ним.

По мере того, как скорости становятся одинаковыми, стартовую частоту питающего тока постепенно увеличивают, разгоняя ротор до номинального значения. Такой способ пуска считается мягким, обеспечивающим плавный пуск. Его недостатком является необходимость в источнике питания регулируемой частоты и напряжения.

Современный частотный пуск синхронного двигателя реализуется на базе схем на полупроводниковых элементах – тиристорных преобразователях. Они снижают характер изменения напряжения, практически не меняя действующее значение. Такой способ пуска в системах автоматики обеспечивает сокращение времени на разгон, что положительно отражается на производительности автоматизированных систем, но в то же время требует более сложной схемы включения.

Защита электродвигателя на старте

Система защиты синхронного двигателя от затянувшегося включения предназначена для снижения негативного влияния чрезмерно высокого момента, возникающего, когда СД запускается. Причина возникновения больших моментных величин состоит в недостаточном возбуждении или его отсутствии в эл/двигателе во время старта. Схема защиты предусматривает применение:

  • реле нулевого тока, осуществляющего контролирование токовой нагрузки при возбуждении;
  • реле времени, отсчитывающего длительность нормального старта.

Система защиты синхронного двигателя от затянувшегося включения срабатывает, когда величина тока возбуждения в эл/моторе не достигла достаточного уровня за время, соответствующее нормальному старту. В этом случае защитная система от затянувшегося пуска прерывает процесс включения, отключая питание статора. Подобная схема защиты относится к категории специальных функций электроприводов, одновременно с защитой от обрыва электрообмотки, превышения скорости, перенапряжения и др.

Источник

Принцип работы синхронного двигателя

Принцип работы синхронного двигателя

В целом, электрический двигатель представляет собой электромеханическое устройство, которое преобразовывает электрическую энергию в механическую.

По типу подключения двигатели бывают однофазные и 3-х фазные. Среди 3-х фазных двигателей наиболее распространенными являются индукционные (асинхронные) и синхронные электродвигатели.

Когда в 3-х фазном двигателе электрические проводники располагаются в определенном геометрическом положении (под определенным углом относительно друг друга), возникает электрическое поле. Образованное электромагнитное поле вращается с определенной скоростью, которая называется синхронной скоростью.

Если в этом вращающемся магнитном поле присутствует электромагнит, он магнетически замыкается с этим вращающимся полем и вращается со скоростью этого поля. Фактически, это нерегулируемый двигатель, поскольку он имеет всего одну скорость, которая является синхронной, и никаких промежуточных скоростей там быть не может. Другими словами, он работает синхронно с частотой сети.

Читайте также:  Та глубина способ образования

Ниже дана формула синхронной скорости:

Строение синхронного двигателя

Его строение практически аналогично 3-фазному асинхронному двигателю, за исключением того факта, что на ротор подается источник постоянного тока.

На рисунке показано устройство этого типа двигателя. На статор подается 3-х фазное напряжение, а на ротор – источник постоянного тока.

Строение синхронного двигателя

Основные свойства синхронных двигателей:

  • Синхронные электродвигатели не являются самозапускающимся механизмом. Они требуют определенного внешнего воздействия, чтобы выработать определенную синхронную скорость.
  • Двигатель работает синхронно с частотой электрической сети. Поэтому при обеспечении бесперебойного снабжения частоты он ведет себя так, как двигатель с постоянной скоростью.
  • Этот двигатель имеет уникальные характеристики, функционируя под любым коэффициентом мощности. Поэтому они используются для увеличения фактора силы.

Видео: Строение и принцип работы синхронного двигателя

Принципы работы синхронного двигателя

Электронно-магнитное поле синхронного двигателя обеспечивается двумя электрическими вводами. Это обмотка статора, которая состоит из 3-х фаз и предусматривает 3 фазы источника питания и ротор, на который подается постоянный ток.

3 фазы обмотки статора обеспечивают вращение магнитного потока. Ротор принимает постоянный ток и производит постоянный поток. При частоте 50 Гц 3-х фазный поток вращается около 3000 оборотов в 1 минуту или 50 оборотов в 1 секунду. В определенный момент полюса ротора и статора могут быть одной полярности (++ или – – ), что вызывает отталкивания ротора. После этого полярность сразу же меняется (+–), что вызывает притягивание.

Но ротор по причине своей инерции не в состоянии вращаться в любом направлении из-за силы притяжения или силы отталкивания и не может оставаться в состоянии простоя. Он не самозапускающийся.

Чтобы преодолеть инерцию силы, необходимо определенное механическое воздействие, которое вращает ротор в том же направлении, что и магнитное поле, обеспечивая необходимую синхронную скорость. Через некоторое время происходит замыкание магнитного поля, и синхронный двигатель вращается с определенной скоростью.

Способы запуска

  • Пуск синхронного двигателя при помощи вспомогательного двигателя. Синхронный двигатель механически соединяется с другим двигателем. Это может быть либо 3-х фазный индукционный двигатель, либо двигатель постоянного тока. Постоянный ток изначально не подается. Двигатель начинает вращаться со скоростью, близкой к синхронной скорости, после чего подается постоянный ток. После того, как магнитное поле замыкается, связь со вспомогательного двигателя прекращается.
  • Асинхронный пуск. В полюсных наконечниках полюсов ротора устанавливается дополнительная короткозамкнутая обмотка. При включении напряжения в обмотку статора возникает вращающееся магнитное поле. Пересекая короткозамкнутую обмотку, которая заложена в полюсных наконечниках ротора, это вращающееся магнитное поле индуцирует в ней токи, который взаимодействуя с вращающимся полем статора, приводят ротор во вращение. Когда достигнута синхронная скорость, ЭДС и крутящийся момент уменьшается. И наконец, когда магнитное поле замыкается, крутящий момент также сводится к нулю. Таким образом, синхронность вначале запускается индукционным двигателем с использованием дополнительной обмотки.

Применение

  • Синхронный двигатель используется для улучшения коэффициента мощности. Синхронные двигатели широко применяются в энергосистеме, поскольку они работают при любом коэффициенте мощности и имеют экономичные эксплуатационные показатели.
  • Синхронные двигатели находят свое применение там, где рабочая скорость не превышает 500 об / мин и требуется увеличить мощность. Для энергетической потребности от 35 кВт до 2500 кВт, стоимость, размер, вес и соответствующего индукционного двигателя будет довольно высоким. Такие двигатели часто используются для работы поршневых насосов, компрессоров, прокатных станков и другого оборудования.

Устройство и принцип действия синхронного двигателя

Отличие от асинхронного мотора

Главное отличие синхронной машины заключается в том, что скорость вращения якоря такая же, как и аналогичная характеристика магнитного потока.

И если в асинхронных моторах используется короткозамкнутый ротор, то в синхронных имеется на нем проволочная обмотка, к которой подводится переменное напряжение.

В некоторых конструкциях используются постоянные магниты. Но это делает двигатель дороже.

Если увеличивать нагрузку, подключаемую к ротору, частота вращения его не изменится. Это одна из ключевых особенностей такого типа машин. Обязательное условие – у движущегося магнитного поля должно быть столько же пар полюсов, сколько у электромагнита на роторе. Именно это гарантирует постоянную угловую скорость вращения этого элемента двигателя. И она не будет зависеть от момента, приложенного к нему.

Конструкция мотора

Устройство и принцип действия синхронных двигателей несложны.

Конструкция включает в себя такие элементы:

  1. Неподвижная часть – статор. На ней находится три обмотки, которые соединяются по схеме «звезда» или «треугольник». Статор собран из пластин электротехнической стали с высокой степенью проводимости.
  2. Подвижная часть – ротор. На нем тоже имеется обмотка. При работе на нее подается напряжение.

Между ротором и статором имеется прослойка воздуха. Она обеспечивает нормальное функционирование двигателя и позволяет магнитному полю беспрепятственно воздействовать на элементы агрегата. В конструкции присутствуют подшипники, в которых вращается ротор, а также клеммная коробка, расположенная в верхней части мотора.

Как работает двигатель

Если кратко, принцип действия синхронного двигателя, как и любого другого, заключается в преобразовании одного вида энергии в другой. А конкретно – электрической в механическую. Работает мотор таким образом:

  1. На статорные обмотки подается переменное напряжение. Оно создает магнитное поле.
  2. На обмотки ротора также подается переменное напряжение, создающее поле. Если используются постоянные магниты, то это поле уже по умолчанию имеется.
  3. Два магнитных поля взаимопересекаются, противодействуют друг другу – одно толкает другое. Из-за этого двигается ротор. Именно он установлен на шарикоподшипниках и способен свободно вращаться, дать ему нужно только толчок.
Читайте также:  Способы измерения высокого напряжения

Вот и все. Теперь остается только использовать полученную механическую энергию в нужных целях. Но требуется знать, как правильно вывести в нормальный режим синхронный двигатель. Принцип работы у него отличается от асинхронного. Поэтому требуется придерживаться определенных правил.

Для этого электродвигатель подключают к оборудованию, которое необходимо привести в движение. Обычно это механизмы, которые должны работать практически без остановок – вытяжки, насосы и прочее.

Синхронные генераторы

Обратная конструкция – синхронные генераторы. В них процессы протекают немного иначе. Принцип действия синхронного генератора и синхронного двигателя отличаются, но не существенно:

  1. На обмотку статора не подается напряжение. С нее оно снимается.
  2. На обмотку ротора подается переменное напряжение, которое необходимо для создания магнитного поля. Потребление электроэнергии крайне маленькое.
  3. Ротор электрогенератора раскручивается при помощи дизельного или бензинового двигателя либо же силой воды, ветра.
  4. Вокруг ротора имеется магнитное поле, которое двигается. Поэтому в обмотке статора индуцируется ЭДС, а на концах появляется разность потенциалов.

Но в любом случае требуется стабилизировать напряжение на выходе генераторной установки. Для этого достаточно запитать роторную обмотку от источника, напряжение которого постоянно и не изменяется при колебаниях частоты вращения.

Полюсы обмоток двигателя

В конструкции ротора имеются постоянные или электрические магниты. Их обычно называют полюсами. На синхронных машинах (двигателях и генераторах) индукторы могут быть двух типов:

Они различаются между собой только взаимным расположением полюсов. Для уменьшения сопротивления со стороны магнитного поля, а также улучшения условий для проникновения потока, используются сердечники, изготовленные из ферромагнетиков.

Эти элементы располагаются как в роторе, так и в статоре. Для изготовления используются только сорта электротехнической стали. В ней очень много кремния. Это отличительная особенность такого вида металла. Это позволяет существенно уменьшить вихревые токи, повысить электрическое сопротивление сердечника.

Воздействие полюсов

В основе конструкции и принципа действия синхронных двигателей лежит обеспечение влияния пар полюсов ротора и статора друг на друга. Для обеспечения работы нужно разогнать индуктор до определенной скорости. Она равна той, с которой вращается магнитное поле статора. Именно это позволяет обеспечить нормальную работу в синхронном режиме. В момент, когда происходит запуск, магнитные поля статора и ротора взаимно пересекаются. Это называется «вход в синхронизацию». Ротор начинает вращаться со скоростью, как у магнитного поля статора.

Запуск электродвигателей синхронного типа

Самое сложное в работе синхронного мотора – это его запуск.

Именно поэтому его используют крайне редко. В

едь конструкция усложняется за счет системы запуска.

На протяжении долгого времени работа синхронного двигателя зависела от разгонного асинхронника, механически соединенным с ним.

Что это значит? Второй тип двигателя (асинхронный) позволял разогнать ротор синхронной машины до подсинхронной частоты.

Обычные асинхронники не требуют специальных устройств для запуска, достаточно только подать рабочее напряжение на обмотки статора.

После того, как будет достигнута требуемая скорость, происходит отключение разгонного двигателя. Магнитные поля, которые взаимодействуют в электрическом моторе, сами выводят его на работу в синхронном режиме. Для разгона потребуется другой двигатель. Его мощность должна составлять примерно 10-15 % от аналогичной характеристики синхронной машины. Если нужно вывести в режим электродвигатель 1 кВт, для него потребуется разгонный мотор мощностью 100 Вт. Этого вполне достаточно, чтобы машина смогла работать как в режиме холостого хода, так и с незначительной нагрузкой на валу.

Более современный способ разгона

Стоимость такой машины оказывалась намного выше. Поэтому проще использовать обычный асинхронный мотор, пусть и много у него недостатков. Но именно его принцип работы и был использован для уменьшения габаритов и стоимости всей установки. При помощи реостата производится замыкание обмоток на роторе. В итоге двигатель становится асинхронным. А запустить его оказывается намного проще – просто подается напряжение на обмотки статора.

Во время выхода на подсинхронную скорость возможно раскачивание ротора. Но это не происходит за счет работы его обмотки. Напротив, она выступает в качестве успокоителя. Как только частота вращения будет достаточной, производится подача постоянного напряжения на обмотку индуктора. Двигатель выводится в синхронный режим. Но такой способ можно воплотить только в том случае, если используются моторы с обмоткой на роторе. Если там применяется постоянный магнит, придется устанавливать дополнительный разгонный электродвигатель.

Преимущества и недостатки синхронных моторов

Основное преимущество (если сравнивать с асинхронными машинами) – за счет независимого питания роторной обмотки агрегаты могут работать и при высоком коэффициенте мощности. Также можно выделить такие достоинства, как:

  1. Снижается ток, потребляемый электродвигателем, увеличивается КПД. Если сравнивать с асинхронным мотором, то эти характеристики у синхронной машины оказываются лучше.
  2. Момент вращения прямо пропорционален напряжению питания. Поэтому даже если снижается напряжение в сети, нагрузочная способность оказывается намного выше, нежели у асинхронных машин. Надежность устройств такого типа существенно выше.

Но вот имеется один большой недостаток – сложная конструкция. Поэтому при производстве и последующих ремонтах затраты окажутся выше. Кроме того, для питания обмотки ротора обязательно требуется наличие источника постоянного тока. А регулировать частоту вращения ротора можно только с помощью преобразователей – стоимость их очень высокая. Поэтому синхронные моторы используются там, где нет необходимости часто включать и отключать агрегат.

Источник

Оцените статью
Разные способы