Сила лоренца способ определения направления

3.3.4 Сила Лоренца, её направление и величина

Видеоурок 1: Галилео. Эксперимент. Сила Лоренца

Видеоурок 2: Сила Лоренца. Движение заряженных частиц в магнитном поле

Лекция: Сила Лоренца, её направление и величина

На любую частицы, которая имеет заряд, в магнитном поле действует некоторая сила, которая называется силой Лоренца.

Данная величина зависит от того, насколько быстро передвигается частица в поле, от величины поля, от заряда частицы, а также от угла между скоростью и полем.

Обратите внимание на рисунок: Если рассматривать индукцию и скорость, то можно отметить, что величины лежат в одной плоскости. Что касается силы Лоренца, то она всегда направлена перпендикулярно к плоскости магнитного поля.

Определить направление силы Лоренца можно с помощью следующего правила, аналогичного правилу для нахождения силы Ампера:

Четыре пальца левой руки должны быть направлены в ту же сторону, куда двигается частица. Линии магнитного поля проникают в ладонь. Отогнутый на 90 градусов большой палец укажет на направление силы Лоренца. Данной правило справедливо для положительно заряженной частицы. В случае с отрицательной частицей скорость направлена в противоположную сторону.

Источник

Сила Лоренца: определение, формула, применение на практике

Мари Ампер доказал, что при наличии электрического тока в проводнике, оказавшемся в магнитном поле, он взаимодействует с силами этого поля. Учитывая то, что электрический ток – это не что иное, как упорядоченное движение электронов, можно предположить, что электромагнитные поля подобным образом действуют также на отдельно взятую заряженную частицу. Это действительно так. На точечный заряд действует сила Лоренца, модуль которой можно вычислить по формуле.

Определение и формула

Хендрик Лоренц доказал, что электромагнитная индукция взаимодействует с заряженными частицами. Эти взаимодействия приводят к возникновению силы Лоренца. Рассматриваемая сила возникает под действием магнитной индукции. Она перпендикулярна вектору скорости движущейся частицы (см. рис. 1). Необходимым условием возникновения этой силы является движение электрического заряда.

Рис. 1. Выводы Лоренца

Обратите внимание на расположение векторов (рисунок слева, вверху). Векторы, указывающие направления скорости и силы Лоренца, лежат в одной плоскости XOY, причём они расположены под углом 90º. Вектор магнитной индукции сориентирован вдоль оси Z, перпендикулярной плоскости XOY, а значит, в выбранной системе координат он перпендикулярен к векторам силы и скорости.

Учитывая, что

(здесь j – плотность тока, q – единичный заряд, n – количество зарядов на бесконечно малую единицу длины проводника, S – сечение проводника, символом v обозначен модуль скорости движущейся частицы), запишем формулу Ампера в виде:

Так, как nSdl общее число зарядов в объёме проводника, то для нахождения силы, действующей на точечный заряд, разделим выражение на количество частиц:

Модуль F вычисляется по формуле:

Из формулы следует:

  1. Сила Лоренца приобретает максимальное значение, если угол α прямой.
  2. Если точечный заряд, например, электрон, попадает в среду однородного магнитного поля, обладая некой начальной скоростью, перпендикулярной к линиям электромагнитной индукции, тогда вектор F будет перпендикулярен к вектору скорости. На точечный заряд будет действовать центробежная сила, которая заставит его вращаться по кругу. При этом работа равняется нулю (см. рис.2).
  3. Если угол между вектором индукции и скоростью частицы не равняется 90º, тогда заряд будет двигаться по спирали. Направление вращения зависит от полярности заряда (рис. 3).

Рис. 2. Заряженная частица между полюсами магнитов Рис. 3. Ориентация вектора в зависимости от полярности заряда

Из рисунка 3 видно, что вектор F направлен в противоположную сторону, если знак заряда меняется на противоположный (при условии, что направления остальных векторов остаются неизменными).

Траекторию движения частицы правильно называть винтовой линией. Радиус этой винтовой линии (циклотронный радиус) определяется перпендикулярной к полю составной начальной скорости частицы. Шаг винтовой линии, вдоль которой перемещается частица, определяется составной начальной скорости заряда, вошедшего в однородное магнитное поле. Эта составная направлена параллельно к электромагнитным линиям.

В чём измеряется?

Размерность силы Лоренца в международной системе СИ – ньютон (Н). Разумеется, модуль силы Лоренца настолько крохотная величина, по сравнению с ньютоном, что её записывают в виде К×10 -n Н, где 0

Читайте также:  Кофеварка энерджи ен 601 способ приготовления

Поскольку эту формулу вывел Лоренц, то её также называют именем учёного-физика.

Направление силы Лоренца

Мы уже упоминали, что направление возникшей силы Лоренца, кроме магнитных параметров, определяется (в том числе) полярностью заряда. Если бы мы имели возможность наблюдать заряженную элементарную частицу, пребывающую в магнитном поле, то по вектору её перемещения можно было бы определить направление вектора силы F.

Но на практике наблюдать элементарные заряды очень сложно из-за крохотных размеров. Поэтому для определения этого направления применяют способ, известен, как правило левой руки (рис. 4).

Рис. 4. Нахождение вектора силы Лоренца

Ладонь необходимо развернуть так, чтобы вектор индукции входил в неё. В случае с положительным зарядом, вытянутые пальцы располагают по движению частицы. (для отрицательного заряда пальцы направляют в противоположную сторону). Большой палец под прямым углом указывает искомое направление.

Если известна ориентация вектора скорости частицы, то определить направления остальных векторов можно, применяя правило правой руки, которое понятно из рисунка 5.

Рис. 5. Пример применения правила правой руки

Применение на практике

Практическое значение работ Лоренца мы можем наблюдать в электронно-лучевых трубках. Там поток электронов движется в магнитном поле, изменением которого задаётся траектория электронного пучка.

Данный принцип управления траекторией электронного пучка использовался в старых моделях телевизоров Рис. 6). Электроны под воздействием магнитных полей очерчивали линии на люминофоре кинескопа, рисуя изображения на экране.

Рис. 6. Применение учения Лоренца

На рисунке справа изображена схема масспектрографа – прибора для разделения заряженных частиц по величине их зарядов.

Ещё один пример – бесконтактный электромагнитный метод определения скорости течения (вязкости) электропроводных жидкостей. Методика может быть применима к расплавленным металлам, например к алюминию. Бесконтактный способ определения вязкости очень полезен при работе с агрессивными жидкими электропроводными веществами (рис. 7).

Рис. 7. Измерение текучести жидких веществ

Работа ускорителей была бы невозможной без участия силы Лоренца. В этих устройствах заряженные частицы удерживаются и разгоняются до околосветовых скоростей благодаря электромагнитам, расположенным вдоль кольцевой трассы.

Мощная электронная лампа – Магнетрон также работает на принципе взаимодействия электронов с магнитными полями, которые направляют высокочастотное излучение в нужном направлении. Магнетрон является основной рабочей деталью микроволновых печей.

На основании действия силы Лоренца создано много других устройств, используемых на практике.

Источник

Сила лоренца способ определения направления

Формулировки экспериментального закона: 1. Заряженная частица в магнитном поле может изменять направление своего движения под действием магнитных сил, которые называются силами Лоренца. 2. В случае, когда заряженная частица движется и в магнитном, и в электрическом полях, результирующую силу называют обобщенной силой Лоренца.

Формула экспериментальной связи физических величин и словесное изложение формулы: Рассмотрим движение заряженной частицы только в магнитном поле: FЛ=Q[v,B], FЛ = QB∙ʋ∙sinα. Сила Лоренца пропорциональна следующим величинам: заряду частицы, ее скорости, индукции магнитного поля и синусу угла между вектором скорости движения частицы и направлением вектора магнитной индукции. Для определения направления силы Лоренца только для случая прямого угла между указанными векторами используется правило левой руки: если левую руку расположить так, чтобы силовые линии входили в ладонь, а четыре пальца указывали направление скорости положительно заряженных частиц, то отогнутый большой палец покажет направление силы Лоренца.

Правило определения направления силы Лоренца с помощью левой руки дано для положительно заряженной частицы. Если знак заряда частицы — отрицательный, направление силы Лоренца обратно тому, которое определено с помощью правила левой руки.

Расшифровка формулы: Q – заряд частицы; B – величина индукции магнитного поля; ʋ – модуль скорости частицы; α – угол между направлением вектора магнитной индукции и вектором скорости частицы. Если движется положительно заряженная частица, тонаправление силы Лоренца определяется по правилу левой руки. Если заряд частицы отрицательный, то направление силы Лоренца обратно тому, которое определено с помощью правила левой руки.

Смысл константы (фундаментальная / нефундаментальная): новой константы не возникает. (Силу Лоренца можно считать определением магнитной индукции, как и силу Ампера. Но эксперимент легче поставить для тока, чем для движения одной заряженной частицы. Поэтому для определения магнитной индукции мы выберем силу Ампера).

Условия применения закона: применяется всегда.

Источник

Читайте также:  Способ организации проводной связи

Сила Лоренца — основные понятия, формулы и определение с примерами

Содержание:

Сила Лоренца:

Центростремительное (нормальное) ускорение появляется при криволинейном движении тела и характеризует скорость изменения направления скорости с течением времени. Оно вычисляется по формуле

Согласно закону Ампера на проводник с током в магнитном поле действует сила, которую можно рассматривать как результат действия магнитного поля на все движущиеся в проводнике заряды. Отсюда можно сделать вывод, что магнитное поле оказывает силовое действие на каждый движущийся заряд.

По закону Ампера на проводник длиной

Поскольку электрический ток — направленное движение заряженных частиц, то силу тока можно представить в виде

где q — величина заряда одной частицы, n — концентрация заряженных частиц (число частиц в единице объема проводника), — средняя скорость упорядоченного движения заряженных частиц, S — площадь поперечного сечения проводника.

Тогда

где — число заряженных частиц, упорядоченно движущихся во всем объеме проводника длиной

Разделив модуль силы F на число частиц N, получим модуль силы, действующей на один движущийся заряд со стороны магнитного поля:

где v — модуль скорости движущегося заряда.

Выражение для силы, с которой магнитное поле действует на движущийся заряд, в 1895 г. впервые получил голландский физик Хендрик Антон Лоренц. В его честь эта сила называется силой Лоренца:

Как определить направление силы Лоренца

Направление силы Лоренца определяется по правилу левой руки (рис. 153):
если левую руку расположить так, чтобы перпендикулярная к скорости составляющая вектора индукции магнитного поля входила в ладонь, а четыре вытянутых пальца указывали направление движения положительно заряженной частицы, то отогнутый на 90° большой палец укажет направление силы Лоренца действующей на частицу со стороны магнитного поля. Для отрицательно заряженной частицы (например, для электрона) направление силы будет противоположным.

Поскольку сила Лоренца перпендикулярна вектору скорости, то она не может изменить модуль скорости, а изменяет только ее направление и, следовательно, работы не совершает.

Таким образом, если поле однородно, то при движении частицы перпендикулярно к магнитной индукции поля ее траекторией будет окружность (рис. 154, а), плоскость которой перпендикулярна к магнитному полю.

Ускорение частицы (R — радиус окружности) направлено к центру окружности. Используя второй закон Ньютона, можем найти период обращения частицы по окружности

и радиус окружности


описываемой частицей в магнитном поле.

Если скорость направлена под углом к индукции магнитного поля, движение заряда можно представить в виде двух независимых движений (рис. 154, б):

  • равномерного вдоль поля со скоростью ( — составляющая вектора скорости, параллельная вектору индукции магнитного поля);
  • по окружности радиусом R в плоскости, перпендикулярной к вектору , с постоянной по модулю скоростью ( — составляющая вектора скорости, перпендикулярная вектору индукции магнитного ноля).

В результате сложения обоих движений возникает движение по винтовой линии, ось которой параллельна магнитному полю (см. рис. 154, б). Период этого движения определяется по формуле

Действие силы Лоренца широко применяется в различных электротехнических устройствах:

  1. электронно-лучевых трубках телевизоров и дисплеев;
  2. ускорителях заряженных частиц (циклотронах);
  3. масс-спектрометрах — приборах, определяющих отношение зарядов частиц к их массе по радиусу окружности, описываемой ими в магнитном поле;
  4. магнитогидродинамических генераторах ЭДС (МГД-генератор — устройство для генерации электрических токов, использующее проводящие жидкости, движущиеся в магнитном поле).

Что такое сила Лоренца

Силой Лоренца FЛ называют силу, действующую на электрически заряженную частицу, двигающуюся в электромагнитном поле, определяя действия на нес электрической» и магнитного полей одновременно. Это выражается формулой:

где — электрическая составляющая силы Лоренца, описывающая взаимодействие движущейся частицы и равная — магнитная составляющая силы Лоренца, определяющая взаимодействие заряженной частицы с магнитным полем.

Сила Лоренца действует на движущуюся электрически заряженную частицу в электромагнитном поле.

Для упрощения рассмотрим случай, когда , а сила Лоренца равна магнитной составляющей.

Выясним, как можно рассчитать силу, действующую на движущуюся заряженную частицу в магнитном поле. Как известно, электрический ток в проводнике — это упорядоченное движение заряженных частиц. Согласно электронной теории сила тока рассчитывается по формуле:

где I — сила тока; е — заряд частицы; — концентрация частиц в проводнике; V — объем; — скорость движения частиц; S площадь поперечного сечения проводники.

Действие магнитного поля на проводник с током является действием магнитного поля на все движущиеся заряженные частицы. Поэтому формулу силы Ампера можно записать с учетом выражения силы тока в электронной теории:

Читайте также:  Помидоры соленые холодный способ рецепт

Если учесть, то

Если сила Ампера является равнодействующей всех сил, действующих на N частиц, то на одну частицу будет действовать сила в N раз меньше:

Это и есть формула для расчета магнитной составляющей силы Лоренца:

Магнитная составляющая силы Лоренца

Анализ этой формулы позволяет сделать выводы, что:

  1. магнитная составляющая силы Лоренца действует только на движущуюся частицу (≠ 0);
  2. магнитная составляющая не действует на движущуюся частицу, которая движется вдоль линии магнитной индукции (а = 0).

Направление магнитной составляющей силы Лоренца, как и силы Ампера, определяется по правилу левой руки. При этом необходимо учитывать, что это справедливо для положительно заряженных частиц. Если определять направление силы Лоренца, действующей на электрон или другую отрицательно заряженную частицу, то, применяя правило левой руки, нужно мысленно изменять направление движения на противоположное.

Сила Лоренца направлена всегда под некоторым углом к скорости частицы, поэтому она придает ей центростремительное ускорение (рис. 2.15).

Для случая, если


Рис. 2.15. Сила Лоренца придает частице центростремительное ускорение

Таким образом, заряженная частица, попадая в магнитной поле, начинает двигаться по дуге окружности. При иных значениях α ≠ О траектория движения частицы в магнитном поле приобретает форму спирали.

Наблюдать действие силы Лоренца можно с помощью электронно-лучевой трубки, которая есть во многих осциллографах (рис. 2.16), Если включить питание осциллографа, то на его экране можно увидеть светлое пятно, появившееся в месте падения электронов на экран. Если теперь сбоку поднести к трубке постоянный магнит, то пятно сместится, что подтверждает действие магнитного поля на движущиеся электроны.


Рис. 2.16. Магнитное поле смещает электронный пучок в трубке осциллографа

Действие силы Лоренца применяется во многих приборах и технических установках. Так, смещение электронного луча, который «рисует» изображение на экране вакуумного кинескопа телевизора или дисплея компьютера, совершается магнитным полем специальных катушек, в которых проходит электрический ток, изменяющийся во времени по определенному закону,
В научных исследованиях применяют так называемые циклические ускорители заряженных частиц, в них магнитное поле мощных электромагнитов удерживает заряженные частицы на круговых орбитах.

Весьма перспективными для развития электроэнергетики являются магнито-гидродипамические генераторы (МГД-генераторы) (рис. 2.17). Поток высокотемпературного газа (плазмы), который образуется при сгорании органического топлива и имеет высокую концентрацию ионов обоих знаков, пропускается через магнитное ноле.


Puc. 2.17. Схема, объясняющая действие МГД-генератора

Вследствие действия силы Лоренца ионы отклоняются от прежнего направления движения и оседают на специальных электродах, сообщая им определенный заряд. Полученную при этом разность потенциалов можно использовать для получения электрического тока. Такие установки в будущем могут существенно повысить КПД тепловых «электростанций за счет выработки дополнительной электроэнергии при прохождении газов, которые после выхода из топки имеют довольно высокую температуру и высокую ионизацию, через MГД-генераторы.

Пример решения задачи

Электрон влетает в однородное магнитное поле с индукцией 10 -4 Тл перпендикулярно к линиям магнитной индукции. Его скорость 1.6 . 10 6 м/с. Найти радиус окружности, по которой движется электрон.

Дано:
В = 10 -4 Тл,
= 1,6 ∙ 10 -6 м/с,
е = 1,6 • 10 -19 Кт,
= 90°.
Peшение
Сила Лоренца в данном случае действует
под прямым углом к скорости движения
электрона, не изменяя его скорости.
Поэтому она придает электрону центростремительное ускорение.
Таким образом, можно записать:
R-?

Отсюда

Подставим значения физических величин:

Ответ: электрон будет двигаться по круговой орбите, радиус которой 9,1 ∙ 10 -2 м.

Рекомендую подробно изучить предметы:
  1. Физика
  2. Атомная физика
  3. Ядерная физика
  4. Квантовая физика
  5. Молекулярная физика
Ещё лекции с примерами решения и объяснением:
  • Правило Буравчика в физике
  • Шунт и добавочное сопротивление
  • Электродвижущая сила
  • Электрические измерительные приборы
  • Закон Ома для полной цепи
  • Закон Ома для цепи переменного тока с последовательным соединением сопротивлений
  • Сила и закон Ампера
  • Закон взаимодействия прямолинейных параллельных проводников с током

При копировании любых материалов с сайта evkova.org обязательна активная ссылка на сайт www.evkova.org

Сайт создан коллективом преподавателей на некоммерческой основе для дополнительного образования молодежи

Сайт пишется, поддерживается и управляется коллективом преподавателей

Whatsapp и логотип whatsapp являются товарными знаками корпорации WhatsApp LLC.

Cайт носит информационный характер и ни при каких условиях не является публичной офертой, которая определяется положениями статьи 437 Гражданского кодекса РФ. Анна Евкова не оказывает никаких услуг.

Источник

Оцените статью
Разные способы