В инерциальной системе отсчета изменение скорости тела возможно только при взаимодействии его с другими телами. Для характеристики этого взаимодействия используют такую физическую величину как сила. Сила дает количественную меру взаимодействия тел.
Виды сил
По своей природе силы могут быть различными. Существуют гравитационные, электрические, магнитные и другие силы. При рассмотрении задач механики физическая природа сил, вызывающих ускорение тела, не является значимой и не рассматривается. При этом для всех видов взаимодействия количественная мера взаимодействия тел выбирается единым образом. Силы разной природы измеряют в одинаковых единицах, при помощи одних и тех же эталонов. В связи с такой универсальностью механика успешно описывает движение под воздействием сил любой природы.
Определение силы в механике отвечает на вопросы: как измерять силу, и какими свойствами она обладает?
Измерение сил
Результатом взаимодействия тел является деформация тела или его ускорение (или то и другое одновременно). Любе проявление силы можно использовать для ее измерения.
Существуют разные способы измерения сил. Например, на основе способности сил вызывать упругую деформацию твердых тел. Самый простой прибор для измерения силы — это пружинный динамометр. Такая модификация динамометра, как крутильные весы, имеют очень высокую чувствительность и являются одним из самых совершенных приборов в физике. При помощи крутильных весов равенство инертной массы и гравитационной было установлено с относительной погрешностью в $<10>^<-12>.$
Для измерения силы на основе явления упругой деформации выбирают, как эталон пружину, для которой известно, что при растяжении на заданную длину пружина действует на закрепленное на ней тело, силой$\ F_0$, которая направлена по оси пружины. Считаем, что две любые силы равны и имеют противоположные направления, если они действуют одновременно, а тело в инерциальной системе отсчета находится в покое или равномерно и прямолинейно движется. Тогда такой эталон можно дублировать в любом количестве. Имея описанную выше пружину можно установить наличие силы, но для ее измерения наш динамометр следует градуировать.
Сила — вектор
Сила имеет модуль (величину), направление и точку приложения. Если на тело действуют несколько сил, то их можно заменять равнодействующей силой, которая находится как векторная сумма всех сил, приложенных к телу. И наоборот, любую силу можно разложить на составляющие, векторная сумма которых равна рассматриваемой силе.
Равнодействующую можно найти по правилу треугольника, параллелограмма или многоугольника. Если многоугольник сил будет замкнутым, значит, равнодействующая сила равна нулю.
Часть видов сил зависит от взаимного расположения тел при их взаимодействии, например, гравитационные силы, силы Кулона и т.д. Другие силы зависят от относительной скорости движения тел, находящихся во взаимодействии, например, сила трения. Не смотря на специфику разного рода сил, их общим свойством является то, что они сообщают телам, на которые действуют, ускорения.
Единица измерения силы в Международной системе единиц — ньютон.
Основная задача динамики
Основной задачей динамики является изучение и описание движения тел в разных системах отсчета, объяснение причин, определяющих характер их движения. Взаимодействие тел, характеризуемое силами, ведет к изменению характера их движения, следовательно, сила, является важной составляющей большинства законов динамики. Базой классической динамики служат законы Ньютона.
Первый закон Ньютона: В инерциальной системе отсчета, если на тело не действуют с другие тела или действие их взаимно компенсировано, скорость тела не изменяется ни по модулю, ни по направлению. Тело движется равномерно и прямолинейно.
Второй закон Ньютона: если тело массы $m$ движется с ускорением $\overline$, по отношению к инерциальной системе отсчета, то на него действует сила: \[\overline=m\overline\left(1\right).\]
Направление ускорения совпадает с направлением, действующей силы.
Закон (1) можно записать в другом виде:
где $\overline
=m\overline$ — импульс тела. Это наиболее общая формулировка основного закона динамики.
Третий закон Ньютона: Если первое тело действует на второе тело с силой $<\overline>_<12>$, то в этот же момент тело 2 действует на тело 1 с силой $<\overline>_<21>$, при этом:
Примеры задач с решением
Задание. На материальную точку действует сила. Под воздействием этой силы точка перемещается по закону $x(t)=A+Bt+t^2-0,1t^3(м)$. В какой момент времени сила равна нулю?
Решение. Основой для решения задачи является второй закон Ньютона:
Так как уравнение движения тела в условии задачи задано для одной координаты $x$, то будем считать, что движение точки происходит по оси X. Тогда выражение (1.1) можно переписать в виде:
Вычислим первую, затем вторую производные от $x\left(t\right):$
Так как масса материальной точки отлична от нуля, для того, чтобы была равна нулю сила должно быть равно нулю ускорение точки. Приравняем полученное ускорение (1.4) к нулю, выразим время:
Ответ. $F(t=3\frac<1><3>c)$=0
Задание. Каков коэффициент сопротивления ($\mu $) движению материальной точки, массы $m$ в воздухе, если она движется горизонтально, начальная скорость равна $v_0$? Через время $t_1$ эта скорость стала $v_1.$ Силу сопротивления считать пропорциональной квадрату скорости движения точки. Действие силы тяжести не учитывать.
Решение. Запишем выражение силы сопротивления, основываясь на условиях задачи:
В соответствии с основным законом классической динамики имеем:
В проекции на ось X получим:
\[F_s=ma=-\mu v^2\to m\frac
=-\mu v^2\left(2.2\right).\]
мы получили дифференциальное уравнение, которое легко решается методом разделения переменных:
Источник
Что такое сила?
В чем измеряется сила?
Закон всемирного тяготения
Векторные и скалярные величины
Момент силы
Центр тяжести
Центр масс
Масса и плотность
Второй и третий законы Ньютона
Принцип суперпозиции
Что такое сила?
Если тело ускоряется то на него что-то действует. А как найти это «что-то»? Например, что за силы действуют на тело вблизи поверхности земли? Это — сила тяжести, направленная вертикально вниз, пропорциональная массе тела и для высот, много меньших, чем радиус земли $<\large R>$, почти независящая от высоты; она равна
так называемое ускорение силы тяжести. В горизонтальном направлении тело будет двигаться с постоянной скоростью, однако движение в вертикальном направлении по второму закону Ньютона:
после сокращения $<\large m>$ получаем, что ускорение в направлении $<\large x>$ постоянно и равно $<\large g>$. Это хорошо известное движение свободно падающего тела, которое описывается уравнениями
В чем сила измеряется?
Во всех учебниках и умных книжках, силу принято выражать в Ньютонах, но кроме как в моделях которыми оперируют физики ньютоны ни где не применяются. Это крайне неудобно.
Ньютон newton (Н) — производная единица измерения силы в Международной системе единиц (СИ). Исходя из второго закона Ньютона, единица ньютон определяется как сила, изменяющая за одну секунду скорость тела массой один килограмм на 1 метр в секунду в направлении действия силы.
Таким образом, 1 Н = 1 кг·м/с².
Килограмм-сила (кгс или кГ) — гравитационная метрическая единица силы, равная силе, которая действует на тело массой один килограмм в гравитационном поле земли. Поэтому по определению килограмм-сила равна 9,80665 Н. Килограмм-сила удобна тем, что её величина равна весу тела массой в 1 кг. 1 кгс = 9,80665 ньютонов (примерно ≈ 10 Н) 1 Н ≈ 0,10197162 кгс ≈ 0,1 кгс
1 Н = 1 кг x 1м/с2.
Закон тяготения
Каждый объект Вселенной притягивается к любому другому объекту с силой, пропорциональной их массам и обратно пропорционально квадрату расстояния между ними.
Добавить можно, что любое тело реагирует на приложенную к нему силу ускорением в направлении этой силы, по величине обратно пропорциональным массе тела.
В рамках классической механики, гравитационное взаимодействие описывается законом всемирного тяготения Ньютона, согласно которому сила гравитационного притяжения между двумя телами массы $<\large m_1>$ и $<\large m_2>$, разделённых расстоянием $<\large R>$ есть
Здесь $<\large G>$ — гравитационная постоянная, равная $<\large 6,673 \cdot <10^<-11>> m^3 / \left ( kg \cdot ^2 \right ) >$. Знак минус означает, что сила, действующая на пробное тело, всегда направлена по радиус-вектору от пробного тела к источнику гравитационного поля, т.е. гравитационное взаимодействие приводит всегда к притяжению тел. Поле тяжести потенциально. Это значит, что можно ввести потенциальную энергию гравитационного притяжения пары тел, и эта энергия не изменится после перемещения тел по замкнутому контуру. Потенциальность поля тяжести влечёт за собой закон сохранения суммы кинетической и потенциальной энергии, что при изучении движения тел в поле тяжести часто существенно упрощает решение. В рамках ньютоновской механики гравитационное взаимодействие является дальнодействующим. Это означает, что как бы массивное тело ни двигалось, в любой точке пространства гравитационный потенциал и сила зависят только от положения тела в данный момент времени.
Тяжелее — Легче
Вес тела $<\large P>$ выражается произведением его массы $<\large m>$ на ускорение силы тяжести $<\large g>$.
Когда на земле тело становится легче (слабее давит на весы), это происходит от уменьшения массы.На луне все не так, уменьшение веса вызвано изменением другого множителя — $<\large g>$, так как ускорение силы тяжести на поверхности луны в шесть раз меньше чем на земле.
ускорение свободного падения на Земле = $<\large 9,81\ m / c^2 >$
ускорение свободного падения на Луне = $<\large 1,62 \ m / c^2 >$
В результате произведение $<\large m \cdot g >$, а следовательно и вес уменьшаются в 6 раз.
Но нельзя обозначить оба эти явления одним и тем же выражением «сделать легче». На луне тела становятся не легче, а лишь менее стремительно падают они «менее падучи»))).
Векторные и скалярные величины
Векторная величина (например сила, приложенная к телу), помимо значения (модуля), характеризуется также направлением. Скалярная же величина (например, длина) характеризуется только значением. Все классические законы механики сформулированы для векторных величин.
На рис. 1 изображены различные варианты расположения вектора $< \large \overrightarrow>$ и его проекции $< \large F_x>$ и $< \large F_y>$ на оси $< \large X>$ и $< \large Y>$ соответственно:
A. величины $< \large F_x>$ и $< \large F_y>$ являются ненулевыми и положительными
B. величины $< \large F_x>$ и $< \large F_y>$ являются ненулевыми, при этом $<\large F_y>$ — положительная величина, а $<\large F_x>$ — отрицательная, т.к. вектор $<\large \overrightarrow>$ направлен в сторону, противоположную направлению оси $<\large X>$
C. $<\large F_y>$ — положительная ненулевая величина, $<\large F_x>$ равна нулю, т.к. вектор $<\large \overrightarrow>$ направлен перпендикулярно оси $<\large X>$
Момент силы
Моментом силы называют векторное произведение радиус-вектора, проведённого от оси вращения к точке приложения силы, на вектор этой силы. Т.е. согласно классическому определению момент силы — величина векторная. В рамках нашей задачи, это определение можно упростить до следующего: моментом силы $<\large \overrightarrow>$, приложенной к точке с координатой $<\large x_F>$, относительно оси, расположенной в точке $<\large x_0>$ называется скалярная величина, равная произведению модуля силы $<\large \overrightarrow>$, на плечо силы — $<\large \left | x_F - x_0 \right |>$. А знак этой скалярной величины зависит от направления силы: если она вращает объект по часовой стрелке, то знак плюс, если против — то минус.
Важно понимать, что ось мы можем выбирать произвольным образом — если тело не вращается, то сумма моментов сил относительно любой оси равна нулю. Второе важное замечание — если сила приложена к точке, через которую проходит ось, то момент этой силы относительно этой оси равен нулю (поскольку плечо силы будет равно нулю).
Проиллюстрируем вышесказанное примером, на рис.2. Предположим, что система, изображенная на рис. 2, находится в равновесии. Рассмотрим опору, на которой стоят грузы. На неё действуют 3 силы: $<\large \overrightarrow,\ \overrightarrow,\ \overrightarrow,>$ точки приложения этих сил А, В и С соответственно. На рисунке также присутствуют силы $<\large \overrightarrow^>,\ \overrightarrow>>$. Эти силы приложены к грузам, и согласно 3-му закону Ньютона
Теперь рассмотрим условие равенства моментов сил, действующих на опору, относительно оси, проходящей через точку А (и, как мы договаривались ранее, перпендикулярную плоскости рисунка):
Обратите внимание, что в уравнение не вошёл момент силы $<\large \overrightarrow>$, поскольку плечо этой силы относительно рассматриваемой оси равно $<\large 0>$. Если же мы по каким-либо причинам хотим выбрать ось, проходящую через точку С, то условие равенства моментов сил будет выглядеть так:
Можно показать, что с математической точки зрения два последних уравнения эквивалентны.
Центр тяжести
Центром тяжести механической системы называется точка, относительно которой суммарный момент сил тяжести, действующих на систему, равен нулю.
Центр масс
Точка центра масс замечательна тем , что если на частицы образующие тело (неважно будет ли оно твердым или жидким, скоплением звезд или чем то другим) действует великое множество сил (имеются ввиду только внешние силы, поскольку все внутренние силы компенсируют друг друга), то результирующая сила приводит к такому ускорению этой точки, как будто в ней вся масса тела $<\large m>$.
Положение центра масс определяется уравнением:
Это векторное уравнение, т.е. фактически три уравнения — по одному для каждого из трех направлений. Но рассмотрим только $<\large x>$ направление. Что означает следующее равенство?
Предположим тело разделено на маленькие кусочки с одинаковой массой $<\large m>$, причем полная масса тела равна будет равна числу таких кусочков $<\large N>$, умноженному на массу одного кусочка, например 1 грамм. Тогда это уравнение означает, что нужно взять координаты $<\large x>$ всех кусочков, сложить их и результат разделить на число кусочков. Иными словами, если массы кусочков равны то $<\large X_>$ будет просто средним арифметическим $<\large x>$ координат всех кусочков.
центр масс сложного тела
лежит на линии, соединяющей центры масс
двух составляющих его частей
Масса и плотность
Масса — фундаментальная физическая величина. Масса характеризует сразу несколько свойств тела и сама по себе обладает рядом важных свойств.
Масса служит мерой содержащегося в теле вещества.
Масса является мерой инертности тела. Инертностью называется свойство тела сохранять свою скорость неизменной (в инерциальной системе отсчёта), когда внешние воздействия отсутствуют или компенсируют друг друга. При наличии внешних воздействий инертность тела проявляется в том, что его скорость меняется не мгновенно, а постепенно, и тем медленнее, чем больше инертность (т.е. масса) тела. Например, если бильярдный шар и автобус движутся с одинаковой скоростью и тормозятся одинаковым усилием, то для остановки шара требуется гораздо меньше времени, чем для остановки автобуса.
Массы тел являются причиной их гравитационного притяжения друг к другу (см. раздел «Сила тяготения»).
Масса тела равна сумме масс его частей. Это так называемая аддитивность массы. Аддитивность позволяет использовать для измерения массы эталон — 1 кг.
Масса изолированной системы тел не меняется со временем (закон сохранения массы).
Масса тела не зависит от скорости его движения. Масса не меняется при переходе от одной системы отсчёта к другой.
Плотностью однородного тела называется отношение массы тела к его объёму:
Плотность не зависит от геометрических свойств тела (формы, объёма) и является характеристикой вещества тела. Плотности различных веществ представлены в справочных таблицах. Желательно помнить плотность воды: 1000 кг/м3.
Второй и третий законы Ньютона
Взаимодействие тел можно описывать с помощью понятия силы. Сила — это векторная величина, являющаяся мерой воздействия одного тела на другое. Будучи вектором, сила характеризуется модулем (абсолютной величиной) и направлением в пространстве. Кроме того, важна точка приложения силы: одна и та же по модулю и направлению сила, приложенная в разных точках тела, может оказывать различное воздействие. Так, если взяться за обод велосипедного колеса и потянуть по касательной к ободу, то колесо начнёт вращаться. Если же тянуть вдоль радиуса, никакого вращения не будет.
Второй закон Ньютона
Произведение массы тела на вектор ускорения есть равнодействующая всех сил, приложенных к телу:
Второй закон Ньютона связывает векторы ускорения и силы. Это означает, что справедливы следующие утверждения.
$<\large m \cdot a = F>$, где $<\large a>$ — модуль ускорения, $<\large F>$ — модуль равнодействующей силы.
Вектор ускорения имеет одинаковое направление с вектором равнодействующей силы, так как масса тела положительна.
Третий закон Ньютона
Два тела действуют друг на друга с силами, равными по модулю и противоположными по направлению. Эти силы имеют одну и ту же физическую природу и направлены вдоль прямой, соединяющей их точки приложения.
Принцип суперпозиции
Опыт показывает, что если на данное тело действуют несколько других тел, то соответствующие силы складываются как векторы. Более точно, справедлив принцип суперпозиции. Принцип суперпозиции сил. Пусть на тело действуют силы $<\large \overrightarrow, \overrightarrow,\ \ldots \overrightarrow>$ Если заменить их одной силой $ <\large \overrightarrow= \overrightarrow + \overrightarrow \ldots + \overrightarrow>$, то результат воздействия не изменится. Сила $<\large \overrightarrow>$ называется равнодействующей сил $<\large \overrightarrow, \overrightarrow,\ \ldots \overrightarrow>$ или результирующей силой.
Экспедитор или перевозчик? Три секрета и международные грузоперевозки
Экспедитор или перевозчик: кого предпочесть? Если перевозчик хороший, а экспедитор – плохой, то первого. Если перевозчик плохой, а экспедитор – хороший, то второго. Такой выбор прост. Но как определиться, когда хороши оба претендента? Как выбрать из двух, казалось бы, равноценных вариантов? Дело в том, что варианты эти не равноценны.
Страшные истории международных перевозок
МЕЖДУ МОЛОТОМ И НАКОВАЛЬНЕЙ.
Непросто жить между заказчиком перевозки и очень хитро-экономным владельцем груза. Однажды мы получили заказ. Фрахт на три копейки, дополнительные условия на два листа, сборник называется. В среду погрузка. Машина на месте уже во вторник, и к обеду следующего дня склад начинает неспешно закидывать в прицеп все, что собрал ваш экспедитор в адрес своих заказчиков–получателей.
ЗАКОЛДОВАННОЕ МЕСТО – ПТО КОЗЛОВИЧИ.
По легендам и на опыте, все, кто возил грузы из Европы автотранспортом, знают, каким страшным местом является ПТО Козловичи, Брестской таможни. Какой беспредел творят белорусские таможенники, придираются всячески и дерут втридорога. И это правда. Но не вся.
КАК ПОД НОВЫЙ ГОД МЫ ВЕЗЛИ СУХОЕ МОЛОКО.
Загрузка сборным грузом на консолидационном складе в Германии. Один из грузов – сухое молоко из Италии, доставку которого заказал Экспедитор. Классический пример работы экспедитора-«передатчика» (он ни во что не вникает, только передает по цепочке).
Документы для международных перевозок
Международные автомобильные перевозки грузов очень заоргонизованы и обюрокрачены, следствие – для осуществления международных автомобильных перевозок грузов используется куча унифицированных документов. Неважно таможенный перевозчик или обыкновенный — без документов он не поедет. Хоть это и не очень увлекательно, но мы постарались попроще изложить назначение этих документов и смысл, который они имеют. Привели пример заполнения TIR, CMR, T1, EX1, Invoice, Packing List.
Расчет нагрузки на ось для грузовых автоперевозок
Цель — исследование возможности перераспределения нагрузок на оси тягача и полуприцепа при изменении расположения груза в полуприцепе. И применение этого знания на практике.
В рассматриваемой нами системе есть 3 объекта: тягач $(T)$, полуприцеп $<\large (
)>$ и груз $<\large (gr)>$. Все переменные, относящиеся к каждому из этих объектов, будут маркироваться верхним индексом $T$, $<\large >$ и $<\large >$ соответственно. Например, собственная масса тягача будет обозначаться как $m^$.
Ты почему не ешь мухоморы? Таможня выдохнула грусть.
Что происходит на рынке международных автомобильных перевозок? ФТС РФ запретила оформлять книжки МДП без дополнительных гарантий уже нескольких федеральных округах. И уведомила о том, что с 1 декабря текущего года и вовсе разорвет договор с IRU как несоответствующим требованиям Таможенного союза и выдвигает недетские финансовые претензии. IRU в ответ: «Объяснения ФТС России касательно якобы имеющейся у АСМАП задолженности в размере 20 млрд. рублей являются полнейшим вымыслом, так как все старые претензии МДП были полностью урегулированы. Что думаем мы, простые перевозчики?
Stowage Factor Вес и объем груза при расчете стоимости перевозки
Расчет стоимости перевозки зависит от веса и объема груза. Для морских перевозок чаще всего решающее значение имеет объем, для воздушных – вес. Для автомобильных перевозок грузов значение играет комплексный показатель. Какой параметр для расчетов будет выбран в том или ином случае – зависит от удельного веса груза (Stowage Factor).