Элементы комбинаторики (стр. 1 )
| Из за большого объема этот материал размещен на нескольких страницах: 1 2 3 4 |
Комбинаторика – это раздел математики, в котором исследуются и решаются задачи выбора элементов из исходного множества и расположения их в некоторой комбинации, составленной по заданным правилам.
Если исходное множество состоит из n различных элементов, то при каждом выборе мы будем извлекать из него новый элемент, отличный от всех других – это выбор без повторений.
Если исходное множество состоит из элементов k типов (классов), причём внутри каждого класса элементы неразличимы, то при очередном выборе мы можем извлечь либо новый элемент, либо такой, какой уже встречался при предшествующих извлечениях – это выбор с повторениями.
Иногда модель выбора с повторениями описывают по-другому. Полагают, что исходное множество содержит n различных элементов, но каждый элемент после его извлечения «записывается» в создаваемой комбинации и возвращается обратно в исходное множество. При этом каждый из n элементов может быть извлечён и «записан» неоднократно; число повторений зависит только от числа производимых извлечений. Такую модель называют также выбором с возвращением.
Извлечённые из исходного множества m элементов составляют выборку; из элементов выборки в соответствии с заданными правилами строится (или составляется) комбинация элементов.
Правило умножения. Пусть требуется выполнить одно за другим какие-то m действий. Если первое действие можно выполнить n1 способами, второе действие – n2 способами, третье – n3 способами и так до m-го действия, которое можно выполнить nm способами, то все m действий вместе могут быть выполнены n1× n2× n3×… nm способами.
Пример. Четыре мальчика и четыре девочки садятся на 8 расположенных подряд стульев, причём мальчики садятся на места с чётными номерами, а девочки – на места с нечётными номерами. Сколькими способами это можно сделать?
Решение: Первый мальчик может сесть на любое из четырёх чётных мест, второй – на любое из оставшихся трёх мест, третий – на любое из оставшихся двух мест. Последнему мальчику предоставляется всего одна возможность. Согласно правилу умножения, мальчики могут занять 4 места 4×3×2×1=24 способами. Столько же возможностей имеют и девочки. Таким образом, согласно правилу умножения, мальчики и девочки могут занять все стулья 24×24=576 способами.
Ответ: 576 способами.
Правило сложения. Если два действия взаимно исключают друг друга, причём одно из них можно выполнить m способами, а другое – n способами, то выполнить одно любое из этих действий можно m + n способами.
Пример. Имеется 20 тетрадей в линейку и 30 тетрадей в клетку. Необходимо выбрать две тетради одного вида. Сколько способов выбора двух тетрадей возможно, если учитывается порядок выбора тетрадей?
Решение: Условимся первым действием считать выбор тетрадей в линейку, вторым – выбор тетрадей в клетку. По правилу умножения две тетради в линейку можно выбрать 20×19=380 способами. Аналогично, две тетради в клетку можно выбрать 30×29=870 способами. Согласно условию задачи, следует выбрать две тетради одного вида. Таким образом, должно быть выполнено либо первое, либо второе, но не первое действие, а затем второе. Эти действия не могут быть выполнены одновременно. Поскольку они взаимно исключают друг друга. Поэтому общее число способов выбора тетрадей одного вида равно 380+870=1250.
Ответ: 1250 тетрадей.
Размещением из n элементов по m называется любой выбор m элементов, взятых в определённом порядке из n элементов.
Число размещений из n элементов по m обозначают .
Теорема. Число размещений из n элементов по m равно т. е.
Пример. Сколько можно записать четырехзначных чисел, используя без повторения все десять цифр?
Решение: Так как в любом числе важную роль играет порядок входящих в него цифр, то для ответа на поставленный вопрос, очевидно, следует определить число размещений из 10 по 4: . Однако не все последовательности из 4 цифр представляют собой четырёхзначное число, поскольку среди них есть и такие, у которых на 1-м месте находится 0. Найдём число таких последовательностей. Так как у рассматриваемых последовательностей на 1-м месте уже стоит 0, то следует выбрать ещё 3 цифры из оставшихся 9. найдём число размещений из 9 по 3:
. Таким образом, искомое число четырёхзначных чисел равно разности
.
Перестановкой из n элементов называется размещение из n элементов по n.
Число перестановок обозначается Рn
Теорема. Число перестановок n различных элементов равно n! т. е. Рn = n!
Пример. Сколькими способами можно расставить девять различных книг на полках, чтобы определённые четыре книги стояли рядом?
Решение: Будем считать выделенные книги за одну книгу. Тогда для шести книг существует Р6=6!=720 перестановок. Однако 4 определённые книги можно переставить между собой Р4=4!=24 способами. По правилу умножения имеем Р6×Р4=720×24=17280.
Сочетанием из n элементов по m называется любой выбор m элементов, взятых из n элементов.
Число сочетаний из n элементов по m обозначают и вычисляют по формуле:
, которую можно записать также в виде:
Теорема. Число сочетаний из n элементов по m равно т. е.
Пример: Сколькими способами можно группу из 12 человек разбить на две подгруппы, в одной из которых должно быть не более пяти, а во второй – не более девяти человек?
Решение: Первая подгруппа может состоять либо из трёх, либо из четырёх, либо из пяти человек. Подгруппу из трёх человек можно выбрать способами. Подгруппу из четырёх человек можно выбрать
способами, а подгруппу из пяти человек —
способами. Учитывая, что выбор первой подгруппы однозначно определяет вторую, найдём по правилу сложения искомое число способов:
.
Ответ: 1507 способов.
Теорема. Имеет место равенство
Пример. Сколько существует вариантов опроса 11 учащихся на одном занятии, если ни один из них не будет подвергнут опросу дважды и на занятии может быть опрошено любое количество учащихся, причём порядок, в котором опрашиваются учащиеся, безразличен?
Решение: Преподаватель может не спросить ни одного из 11 учащихся, что является одним из вариантов. Этому случаю соответствует . Преподаватель может опросить только одного из учащихся. Таких вариантов
. Если преподаватель будет опрашивать двух учащихся, то число вариантов опроса равно
. Для опроса трёх учащихся существует
вариантов и т. д. Наконец, могут быть опрошены все учащиеся. Число вариантов в этом случае равно
. Тогда по правилу сложения число всех возможных вариантов опроса равно
…
. С другой стороны, для каждого из учащихся существует две возможности: он будет опрошен или не опрошен на данном занятии. Другими словами, каждую из 11 операций, заключающихся в том, что каждый ученик будет либо опрошен, либо не опрошен, можно выполнить по правилу умножения 2×2×2…2=211 способами, что и следовало ожидать, так как
…
.
1. В меню столовой предложено на выбор 5 первых, 8 вторых и 4 третьих блюда. Сколько различных вариантов обедов, состоящих из одного первого, одного второго и одного третьего блюда, можно составить из предложенного меню?
Решение: Согласно правилу умножения таких обедов можно составить 5×8×4 = 160.
Ответ: 160 вариантов обедов.
2. Миша забыл вторую и последнюю цифру пятизначного номера телефона друга. Какое наибольшее число звонков предстоит сделать Мише, если он решил перепробовать комбинации всех забытых цифр, чтобы в результате дозвониться до друга?
Решение: Второй и последней цифрой могут быть все 10 цифр. По правилу умножения получаем 10×10=100.
Ответ: 100 звонков.
4. Девятиклассники Миша, Дима, Антон и Саша побежали на перемене к теннисному столу, за которым уже шла игра. Сколькими способами подбежавшие к столу четверо девятиклассников могут занять очередь для игры в настольный теннис?
Решение: Первым в очередь мог встать любой девятиклассник, вторым – любой из оставшихся троих, третьим – любой из оставшихся двоих и четвёртым – девятиклассник, подбежавший последним. По правилу умножения у четверых ребят существует 4×3×2×1=24 способа занять очередь.
Ответ: 24 способа.
5. Здание школы имеет 5 запасных выходов. Сколькими способами можно войти и выйти из здания школы?
Решение: По правилу умножения получаем 5×5=25 способов.
Ответ: 25 способов.
6. В городских соревнованиях по футболу участвовало 5 команд. Каждая
команда провела с каждой из остальных по одной игре на своём поле и по
одной игре на поле соперника. Сколько всего игр было сыграно?
Решение: Порядок выбора пары не имеет значения. Для каждой игры принимающую команду можно выбрать 5 способами, а команду гостей 4 способами; по правилу умножения общее количество игр равно 5×4=20 игр
7. В гардеробе у Алёши имеются брюки трёх цветов, свитера двух расцветок и ботинки двух цветов. Сколько существует всевозможных цветовых сочетаний брюк, свитера и ботинок у Алёши?
Решение: По правилу умножения получаем 3×2×2=12 сочетаний.
Ответ: 12 сочетаний.
8. Одновременно происходят выборы президента школьной детско-юношеской организации «СОТУР» и его заместителя. На должность президента выставили свои кандидатуры Лапина Юля, Губенко Юля, Осадчук Женя, а на должность заместителя – Малеванова Кристина, Явон Даша и Русалеева Даша. Сколько различных исходов выборов существует? В скольких вариантах будет кандидатура Малевановой Кристины?
Решение: По правилу умножения число различных исходов выборов равно 3×3=9. Кандидатура Малевановой Кристины будет в 3 вариантах.
Ответ: 9 исходов; 3 варианта.
9. У Любы есть любимый костюм, в котором она ходит в школу. Она надевает к нему белую, голубую, розовую или красную блузку, а в качестве «сменки» берёт босоножки или туфли. Кроме того, у Любы есть три разных бантика, подходящих ко всем блузкам. а) Сколько существует вариантов Любиной одежды? б) Сколько дней Люба сможет выглядеть по-новому в этом костюме? в) Сколько дней она будет ходить в туфлях? г) Сколько дней она будет ходить в красной блузке и босоножках?
Решение: а) По правилу умножения получаем: 4×2×3=24 варианта. б) по-новому будет выглядеть 24 дня. в) 12 дней (половина вариантов). г) 3 дня (так как будут меняться только бантики).
Ответ: а) 24 варианта; б) 24 дня; в) 12 дней; г) 3 дня.
10. Составляя расписание уроков на понедельник для 9 «Б» класса, завуч хочет первым уроком поставить либо физику, либо алгебру, а вторым – либо русский язык, либо литературу, либо историю, либо географию. Сколько существует вариантов составления расписания на первые два урока?
Решение: По правилу умножения получаем: 4×2=8 вариантов.
Ответ: 8 вариантов.
11. У Светланы три юбки и 5 кофт, удачно сочетающихся по цвету. Сколько различных комбинаций из юбок и кофт имеется у Светланы?
Решение: По правилу умножения получаем: 3×5=15 комбинаций.
Ответ: 15 комбинаций.
12. Стас решил пойти на новогодний карнавал в костюме мушкетёра. В ателье проката ему предложили на выбор различные по фасону и цвету предметы: 3 пары брюк, 4 камзола, 3 шляпы, 2 пары сапог. Сколько различных карнавальных костюмов можно составить из этих предметов?
Решение: Общее количество предметов по правилу умножения равно: 3×4×3×2=72.
Ответ: 72 различных костюма.
13. Завуч составляет расписание уроков. В пятницу в 9 «Г» классе должно быть 6 уроков, причём обязательно один сдвоенный урок – алгебра. Сколько различных вариантов расписания уроков может составить завуч на пятницу, если 4 оставшихся урока она комбинирует из литературы, истории, биологии и физики?
Решение: Будем рассматривать сдвоенный урок как один урок, тогда всего нужно поставить в расписание 5 уроков. Первый урок можно выбрать из 5 вариантов, второй – из 4 вариантов, третий – из 3 вариантов, четвёртый – из 2 вариантов, а пятым поставить оставшийся урок. Общее число вариантов равно 5×4×3×2×1=120 вариантов.
Ответ: 120 вариантов.
14. На зачёте по алгебре будет пять задач – по одной из каждой пройденной темы. Задачи будут взяты из общего списка по 10 задач в каждой теме, а всего было пройдено 5 тем. При подготовке к зачёту Вова решил только по 8 задач в каждой теме. Найдите: а) общее число всех возможных вариантов зачётной работы; б) число тех вариантов, в которых Вова умеет решать все пять задач;
в) число тех вариантов, в которых Вова не сможет решить ни одной задачи;
г) число тех вариантов, в которых Вова умеет решать все задачи, кроме первой.
Решение: а) Первая задача может быть выбрана 10 способами, вторая тоже 10 (из задач другой темы), третья, четвёртая и пятая задачи также могут быть выбраны 10 способами каждая; по правилу умножения общее число всех возможных вариантов зачётной работы равно 10×10×10×10×10=100000. б) Число вариантов, в которых Вова умеет решать все пять задач равно 8×8×8×8×8=32768. в) Число вариантов, в которых Вова не сможет решить ни одной задачи равно 2×2×2×2×2=32. г) Число тех вариантов, в которых Вова умеет решать все задачи, кроме первой, равно 2×8×8×8×8=8192.
Ответ: а) 100000; б) 32768; в) 32; г) 8192.
1. Сколькими способами Дима и Вова могут занять 2 места за одной двухместной партой?
1 решение: Присвоим каждому месту за партой номер. Тогда Дима и Вова могут занять места за партой такими способами: 1. Дима. 2. Вова или 1. Вова.
2. Дима. Других вариантов нет.
2 решение: Количество различных способов равно числу перестановок из 2 элементов: Р2 = 2! = 1×2 = 2 способа
Ответ: 2 способа.
2. Олеся, Оксана и Юля купили билеты на концерт симфонического оркестра на 1, 2 и 3-е места первого ряда. Сколько существует способов размещения девочек на эти места?
Решение: Количество различных способов равно числу перестановок из 3 элементов: Р3 = 3! = 1×2×3 = 6 способов
Ответ: 6 способов.
3. Из трёх стаканов сока – яблочного, сливового и абрикосового – Коля решил последовательно выпить два. Перечислите все варианты, которыми это можно сделать.
Ответ: 1) яблочный, сливовый; 2) сливовый, яблочный; 3) яблочный, абрикосовый; 4) абрикосовый, яблочный; 5) сливовый, абрикосовый;
6) абрикосовый, сливовый.
4. Сергей, Игорь и Миша могут занять 1-е, 2-е и 3-е призовые места в соревнованиях по шахматам. Перечислить всевозможные последовательности из имён мальчиков, где порядковый номер в последовательности соответствует занятому мальчиком месту в соревнованиях. Подсчитать их количество.
Решение: Сначала выбираем одного на первое место, а двух других меняем местами, потом берём на первое место другого и т. д.: СИМ; СМИ; ИСМ; ИМС; МСИ; МИС. Всего 6 вариантов расположения.
Ответ: 6 вариантов.
5. У Влада на обед – первое, второе, третье и пирожное. Он обязательно начнёт с пирожного, а всё остальное съест в произвольном порядке. Найдите число возможных вариантов обеда.
Решение: После пирожного Влад может выбрать любое из трёх блюд, затем – из двух, и закончит оставшимся. Общее число возможных вариантов обеда:
6. Четыре друга купили билеты в кино: на 1-е и 2-е места в первом ряду и на 1-е и 2-е места во втором ряду. Сколькими способами друзья могут занять эти 4 места в кинотеатре?
Решение: Четыре друга могут занять 4 разных места Р4=4!=1×2×3×4=24 различными способами.
Ответ: 24 способа.
7. Сколькими способами 9 учащихся могут встать в очередь в школьном буфете?
Решение: Присвоим каждому учащемуся номер (от 1 до 9). Тогда каждый способ расположения этих учащихся в очереди будет представлять собой последовательность из 9 цифр, порядок которых может меняться. Количество способов, которыми 9 учащихся могут встать в очередь равно: Р9=9!=1×2×3×4×5×6×7×8×9=362880.
Ответ: 362880 способов.
8. Ольга помнит, что телефон подруги оканчивается цифрами 5, 7, 8, но забыла, в каком порядке эти цифры следуют. Укажите наибольшее число вариантов, которые ей придётся перебрать, чтобы дозвониться подруге.
Решение: Три последних цифры телефонного номера могут быть расположены в одном из Р3=3!=1×2×3=6 возможных порядков, из которых только один верный. Ольга может сразу набрать верный вариант, может набрать его третьим, и т. д. Наибольшее число вариантов ей придётся набрать, если правильный вариант окажется последним, т. е. шестым.
Ответ: 6 вариантов.
9. Семь мальчиков, в число которых входят Сергей и Игорь, становятся в ряд. Найдите число возможных комбинаций, если:
а) Сергей должен находиться в конце ряда;
б) Сергей должен находиться в начале ряда, а Игорь – в конце ряда;
в) Сергей и Игорь должны стоять рядом.
Решение: а) Всего 7 мальчиков на 7 местах, но один элемент фиксирован, не переставляется (Сергей находится в конце ряда). Число возможных комбинаций при этом равно числу перестановок 6 мальчиков, стоящих пред Сергеем: Р6=6!=1×2×3×4×5×6=720. б) Два элемента фиксированы. Число возможных комбинаций равно числу перестановок 5 мальчиков, стоящих между Сергеем и Игорем: Р5=5!=1×2×3×4×5=120. в) Воспользуемся приёмом «склеивания» элементов. Пусть Сергей и Игорь стоят рядом в порядке СИ. Будем рассматривать эту пару как единый элемент, представляемый с другими пятью элементами. Число возможных комбинаций тогда будет Р6=6!=1×2×3×4×5×6=720. пусть теперь Сергей и Игорь стоят рядом в порядке ИС. Тогда получим ещё Р6=6!=720 других комбинаций. Общее число комбинаций, в которых Сергей и Игорь стоят рядом (в любом порядке) равно 720+720=1440.
Ответ: а) 720; б) 120; в) 1440 комбинаций.
10. Одиннадцать футболистов школьной команды строятся перед началом
матча. Первым становится капитан, вторым – вратарь, а остальные – случайным образом. Сколько существует способов построения?
Решение: После капитана и вратаря третий игрок может выбрать любое из 9 оставшихся мест, следующий – из 8, и т. д. Общее число способов построения по правилу умножения равно: 1×9×8×7×6×5×4×3×2×1= или 1× Р9=9!=362880.
11. В расписании на понедельник шесть уроков: алгебра, геометрия, биология, история, химия, физкультура. Сколькими способами можно составить расписание уроков на этот день так, чтобы два урока математики стояли рядом?
Решение: Всего 6 уроков, из них два урока математики должны стоять рядом. «Склеиваем» два элемента (алгебра и геометрия) сначала в порядке АГ, затем в порядке ГА. При каждом варианте «склеивания» получаем: Р5=5!=1×2×3×4×5=120 вариантов расписания. Общее число способов составить расписание равно 120+120=240.
Ответ: 240 способов. рвое место, а двух других меняче место, а двух других менячяем местами, потом берём на первое место другого и т. д.:ет занятому
1. Имеется три предмета: карандаш, тетрадь и линейка. Сколькими способами из этих канцелярских принадлежностей можно выбрать 2 предмета?
1 решение: Два предмета можно выбрать так: берём поочерёдно один предмет из ряда (кроме последнего) и добавляем к нему по одному предметы, следующие за ним в ряду: карандаш, тетрадь; карандаш, линейка; тетрадь, линейка. Получаем 3 различных варианта.
2 решение: способа.
Ответ: 3 способа.
2. В школьной столовой имеются помидоры, огурцы и лук. Сколько различных салатов можно приготовить, если в каждый из них должны входить в равных долях 2 различных вида овощей? Записать все сочетания овощей в составленных салатах.
Решение: Расположим данные овощи по порядку: помидоры, огурцы, лук. Запишем все сочетания овощей в салатах. Будем брать поочерёдно каждый овощ (кроме последнего) и добавлять к нему по одному, только из последующих, поскольку порядок выбора не важен: 1) помидоры, огурцы;
2) помидоры, лук; 3) огурцы, лук.
Ответ: 3 вида салатов.
3. Володя идёт на день рождения к одноклассникам, двойняшкам Диме и Ивану. Он хочет подарить каждому из них по мячу. В магазине остались для продажи только 3 мяча разных цветов: белый, чёрный и пятнистый. Сколькими способами, купив 2 мяча, Володя может сделать подарки братьям?
Решение: По условию задачи предусмотрены два последовательных выбора: сначала Володя выбирает 2 мяча из трёх, имеющихся в магазине, а потом решает, какому из братьев-двойняшек подать каждый из купленных мячей. Два мяча из трёх можно выбрать тремя способами ( способа). После этого каждую выбранную пару можно подарить двумя способами (
способа) (порядок важен). Тогда по правилу умножения искомое число способов равно
способов.
Ответ: 6 способов.
4. В магазине продают кепки трёх цветов: белые, красные и синие. Наташа и Лена покупают себе по одной кепке. Сколько существует различных вариантов покупок для этих девочек?
Решение: В магазине продаются кепки трёх видов, поэтому девочки могут купить кепки одинаковых цветов, т. е. возможен выбор с повторением. Порядок выбора также важен и должен учитываться. Лена может сделать выбор способами и Наташа также 3 способами. По теореме умножения получаем:
вариантов.
Ответ: 9 вариантов.
5. Сколько существует способов выбрать троих ребят из 11 желающих дежурить по школе?
Решение: Количество сочетаний из 11 по 3 (порядок выбора не имеет значения) равно: .
Ответ: 165 способов.
6. В 9 «Г» классе 5 человек успешно занимаются математикой. Сколькими способами можно выбрать из них двоих для участия в математической олимпиаде?
Решение: Выбираем 2 учащихся из 5, порядок выбора не имеет значения (оба выбранных пойдут на олимпиаду как полностью равноправные); количество способов выбора равно числу сочетаний из 5 по 2: способов.
Ответ: 10 способов.
7. Учащимся дали список из 10 книг, которые рекомендуется прочитать во время каникул. Сколькими способами ученик может выбрать из них 6 книг?
Решение: Выбор 6 из 10 без учёта порядка: способов.
Ответ: 210 способов.
8. В 9 «Г» классе учатся 16 мальчиков и 10 девочек. Для уборки территории требуется выделить четырёх мальчиков и трёх девочек. Сколькими способами можно это сделать?
Решение: Нужно сделать два выбора: 4 мальчиков из 16 (всего способов ) и 3 девочек из 10 (всего способов
); порядок выбора значения не имеет (все идущие на уборку равноправные). Каждый вариант выбора мальчиков может сочетаться с каждым выбором девочек, поэтому по правилу умножения общее число способов выбора равно:
×
=
способов.
Ответ: 218400 способов.
9. В библиотеке Кате предложили на выбор из новых поступлений 10 книг и 4 журнала. Сколькими способами она может выбрать из них 3 книги и 2 журнала?
Решение: Нужно сделать два выбора: 3 книги из 10 (способов) и 2 журнала из 4 (
способов); порядок выбора не имеет значения. Каждый выбор книг может сочетаться с каждым выбором журналов, поэтому общее число способов выбора по правилу умножения равно:
×
=
способов.
Ответ: 720 способов.
10. В 9 «Б» классе учатся 22 учащихся, в 9 «В» — 19 учащихся, а в 9 «Г» — 26 учащихся. Для работы на пришкольном участке надо выделить трёх учащихся из 9 «Б» класса, двух – из 9 «В» и одного – из 9 «Г». Сколько существует способов выбора учащихся для работы на пришкольном участке?
Решение: Выбор из трёх совокупностей без учёта порядка, каждый вариант выбора из первой совокупности () может сочетаться с каждым вариантом выбора из второй (
) и с каждым вариантом выбора третьей (
); по правилу умножения получаем:
×
×
=
способов выбора учащихся.
11. По списку в 9 «Г» классе 16 мальчиков и 10 девочек. Нужно выбрать двух дежурных по классу. Сколькими способами это можно сделать: а) при условии. Что пару обязательно должны составить мальчик и девочка; б) без указанного условия?
Решение: а) Выбираем 1 мальчика из 16 и 1 девочку из 10; общее число способов выбора пары: . б) Выбрать 2 дежурных из 16+10=26 учащихся класса (без учёта порядка) можно:
способами.
Ответ: а) 160; б) 325.
12. По списку в 9 «Г» классе 16 мальчиков и 10 девочек. Нужно выбрать двух дежурных по классу. Нужно выделить группу из трёх человек для посещения заболевшего одноклассника. Сколькими способами это можно сделать, если: а) все члены этой группы должны быть девочками; б) все члены этой группы должны быть мальчиками; в) в группе должны быть 1 девочка и 2 мальчика; г) в группе должны быть 2 девочки и 1 мальчик.
Решение: а) Выбрать 3 девочек из 10 имеющихся без учёта порядка можно
различными способами. б) Выбрать 3 мальчиков из 16
имеющихся, без учёта порядка, можно различными способами. в) Выбрать 1 девочку из 10, а затем 2 мальчика из 16 без учёта порядка можно
различными способами. г) Выбрать 2 девочек из 10, а затем 1 мальчика из 16 без учёта порядка можно
различными способами.
Ответ: а) 120; б) 560; в) 1200; г) 720.
1. Сколькими различными способами можно назначить двух ребят на
дежурство по столовой, если в классе 22 учащихся?
Решение: Назначая двух дежурных по столовой, мы не учитываем порядок выбора пары из учащихся данного класса. Так как в классе 22 учащихся, то первого дежурного можно выбрать из 22 учащихся, а второго – из 21 учащегося. Так как порядок выбора не учитывается, то получаем 22×21:2=231 способ.
Ответ: 231 способ
2. В шахматном турнире участвуют 9 старшеклассников. Каждый из них
сыграл с каждым по одной партии. Сколько всего партий было сыграно?
Решение: Поскольку каждая пара участников играла между собой только один раз, порядок выбора не имеет значения. Выбрать первого участника партии можно 9 способами, а второго – 8 оставшимися способами; по теореме умножения всего можно образовать 9×8=72 пары, но в это число каждая пара входит дважды: сначала Дроздов-Гончаров, затем Гончаров-Дроздов. Поскольку порядок выбора не имеет значения, то общее количество партий
равно 9×8:2=36 партий.
Ответ: 36 партий.
3. При встрече 8 друзей обменялись рукопожатиями. Сколько всего было сделано рукопожатий?
Решение: Порядок выбора не имеет значения: если Агапеев пожимает руку Зайцеву, то одновременно и Зайцев пожимает руку Агапееву, поэтому общее количество рукопожатий (пар) равно 8×7:2=28.
Ответ: 28 рукопожатий.
4. У Марины пять подруг: Наташа, Оля, Кристина, Ксения и Светлана. Она решила двух из них пригласить в кино. Сколько существует вариантов?
Решение: По условию ясно, что порядок выбора значения не имеет. По правилу умножения всего 5×4=20 вариантов выбора, но так как порядок выбора не имеет значения, то получаем: 20:2=10 вариантов.
Ответ: 10 вариантов.
5. Учащиеся 9 «Г» класса решили обменяться фотографиями. Сколько фотографий для этого потребуется, если в классе 26 учащихся?
Решение: считаем, что в каждой паре происходит передача одновременно двух фотографий, т. е. учащиеся в паре равноправны, неразличимы. Тогда при образовании пар порядок выбора не имеет значения: количество таких пар равно 26×25:2=325.
Ответ: 325 фотографий.
Разбиение на две группы
1. В списке класса для изучения английского языка 15 человек. Сколько существует вариантов присутствия (отсутствия) этих людей на занятии?
Решение: Задачу решаем разбиением на две группы: присутствующие и отсутствующие. Разбиение на группы однозначно определяется составом элементов в одной из групп (не попавшие в первую группу элементы автоматически образуют вторую группу). Подсчитаем все варианты составления одной группы. Согласно правилу умножения комбинаций (вариантов) из «присутствующих» или «отсутствующих» будет 215.
Источник