Топология
Материал из ПИЭ.Wiki
Термин «топология», или «топология сети», характеризует физическое расположение компьютеров, кабелей и других компонентов сети.
Топология — это стандартный термин, который используется профессионалами при описании основной компоновки сети.
Сетевая топология — способ описания конфигурации сети, схема расположения и соединения сетевых устройств.
Сетевая топология может быть
• физической — описывает реальное расположение и связи между узлами сети.
• логической — описывает хождение сигнала в рамках физической топологии.
Содержание
Базовые топологии
Все сети строятся на основе трех базовых топологий:
Остальные способы являются комбинациями базовых. В общем случае такие топологии называются смешанными или гибридными, но некоторые из них имеют собственные названия, например «Дерево».
Каждая топология сети налагает ряд условий. Например, она может диктовать не только тип кабеля, но и способ его прокладки. Топология может также определять способ взаимодействия компьютеров в сети. Различным видам топологий соответствуют различные методы взаимодействия, и эти методы оказывают большое влияние на сеть.
Топологию «шина» часто называют «линейной шиной» (linear bus). Данная топология относится к наиболее простым и широко распространенным топологиям. В ней используется один кабель, именуемый магистралью или сегментом, вдоль которого подключены все компьютеры сети.
Рис. 1.1. Сетевая топология «шина»
В сети с топологией «шина» компьютеры адресуют данные конкретному компьютеру, передавая их по кабелю в виде электрических сигналов. Однако через особенности распространения электрических сигналов по длинным линиям связи необходимо предусматривать включение на концах шины специальных устройств – терминаторов. Без включения терминаторов сигнал отражается от конца линии и искажается так, что связь по сети становится невозможной.
Данные в виде электрических сигналов передаются всем компьютерам сети; однако информацию принимает только тот, адрес которого соответствует адресу получателя, зашифрованному в этих сигналах. Причем в каждый момент времени только один компьютер может вести передачу.
Так как данные в сеть передаются лишь одним компьютером, ее производительность зависит от количества компьютеров, подключенных к шине. Чем их больше, т.е. чем больше компьютеров, ожидающих передачи данных, тем медленнее сеть. Однако вывести прямую зависимость между пропускной способностью сети и количеством компьютеров в ней нельзя. Ибо, кроме числа компьютеров, на быстродействие сети влияет множество факторов, в том числе:
• характеристики аппаратного обеспечения компьютеров в сети;
• частота, с которой компьютеры передают данные;
• тип работающих сетевых приложений;
• тип сетевого кабеля;
• расстояние между компьютерами в сети.
Шина — пассивная топология. Это значит, что компьютеры только «слушают» передаваемые по сети данные, но не перемещают их от отправителя к получателю. Поэтому, если один из компьютеров выйдет из строя, это не скажется на работе остальных. В активных топологиях компьютеры регенерируют сигналы и передают их по сети.
Сравнение с другими топологиями
• Небольшое время установки сети;
• Дешевизна (требуется меньше кабеля и сетевых устройств);
• Выход из строя рабочей станции не отражается на работе сети.
• Любые неполадки в сети, как обрыв кабеля, выход из строя терминатора полностью уничтожают работу всей сети;
• Сложная локализация неисправностей;
• С добавлением новых рабочих станций падает производительность сети.
Звезда
При топологии «звезда» все компьютеры с помощью сегментов кабеля подключаются к центральному компоненту, именуемому концентратором (hub). Сигналы от передающего компьютера поступают через концентратор ко всем остальным. Эта топология возникла на заре вычислительной техники, когда компьютеры были подключены к центральному, главному, компьютеру.
Рис. 1.2. Сетевая топология «звезда»
В сетях с топологией «звезда» подключение кабеля и управление конфигурацией сети централизованны. Но есть и недостаток: так как все компьютеры подключены к центральной точке, для больших сетей значительно увеличивается расход кабеля. К тому же, если центральный компонент выйдет из строя, нарушится работа всей сети. А если выйдет из строя только один компьютер (или кабель, соединяющий его с концентратором), то лишь этот компьютер не сможет передавать или принимать данные по сети. На остальные компьютеры в сети это не повлияет.
В центре сети содержится компьютер, который выступает в роли сервера.
В центре сети с данной топологией содержится не компьютер, а концентратор, или хаб (hub), что выполняет ту же функцию, что и репитер. Он возобновляет сигналы, которые поступают, и пересылает их в другие линии связи.
Сравнение с другими типами сетей
• выход из строя одной рабочей станции не отражается на работе всей сети в целом;
• хорошая масштабируемость сети;
• лёгкий поиск неисправностей и обрывов в сети;
• высокая производительность сети (при условии правильного проектирования);
• гибкие возможности администрирования.
• выход из строя центрального концентратора обернётся неработоспособностью сети (или сегмента сети) в целом;
• для прокладки сети зачастую требуется больше кабеля, чем для большинства других топологий;
• конечное число рабочих станций в сети (или сегменте сети) ограничено количеством портов в центральном концентраторе.
Кольцо
При топологии «кольцо» компьютеры подключаются к кабелю, замкнутому в кольцо. Сигналы передаются по кольцу в одном направлении и проходят через каждый компьютер. В отличие от пассивной топологии «шина», здесь каждый компьютер выступает в роли репитера, усиливая сигналы и передавая их следующему компьютеру. Поэтому, если выйдет из строя один компьютер, прекращает функционировать вся сеть.
Рис. 1.3. Сетевая топология «кольцо»
Один из принципов передачи данных в кольцевой сети носит название передачи маркера. Суть его такова. Маркер последовательно, от одного компьютера к другому, передается до тех пор, пока его не получит тот, который «хочет» передать данные. Передающий компьютер изменяет маркер, помещает электронный адрес в данные и посылает их по кольцу. Данные проходят через каждый компьютер, пока не окажутся у того, чей адрес совпадает с адресом получателя, указанным в данных.
После этого принимающий компьютер посылает передающему сообщение, где подтверждает факт приёма данных. Получим подтверждение, передающий компьютер создаёт новый маркер и возвращает его в сеть. На первый взгляд кажется, что передача маркера отнимает много времени, однако на самом деле маркер передвигается практически со скоростью света. В кольце диаметром 200 м маркер может циркулировать с частотой 10 000 оборотов в секунду.
Сравнение с другими топологиями
- Простота установки;
- Практически полное отсутствие дополнительного оборудования;
- Возможность устойчивой работы без существенного падения скорости передачи данных при интенсивной загрузке сети, поскольку использование маркера исключает возможность возникновения коллизий.
- Выход из строя одной рабочей станции, и другие неполадки (обрыв кабеля), отражаются на работоспособности всей сети;
- Сложность конфигурирования и настройки;
- Сложность поиска неисправностей.
Наиболее широкое применение получила в оптоволоконных сетях. Используется в стандартах FDDI, Token Ring.
Двойное кольцо — это сеть построенная на двух оптоволоконных кольцах, соединяющих компьютеры с двумя сетевыми картами кольцевой топологией. Для повышения отказоустойчивости, сеть строится на оптоволоконных кольцах образующих основной и резервный путь для передачи данных. Первое кольцо используется для передачи данных, а второе не используется. При выходе из строя 1-го кольца оно объединяется со 2-м и сеть продолжает функционировать. Данные при этом по первому кольцу передаются в одном направлении, а по второму в обратном. Используется маркерный метод доступа. Примером может быть сеть двойного кольца FDDI.
Источник
Сетевая топология способ описания конфигурации сети схема расположения
Понятие топологии сети
Топология — это физическая конфигурация сети в совокупности с ее логическими характеристиками. Топология — это стандартный термин, который используется при описании основной компоновки сети. Если понять, как используются различные топологии, то можно будет определить, какими возможностями обладают различные типы сетей.
Существует два основных типа топологий:
Логическая топология описывает правила взаимодействия сетевых станций при передаче данных.
Физическая топология определяет способ соединения носителей данных.
Термин «топология сети» характеризует физическое расположение компьютеров, кабелей и других компонентов сети. Топология сети обуславливает ее характеристики.
Выбор той или иной топологии влияет на:
- состав необходимого сетевого оборудования
- характеристики сетевого оборудования
- возможности расширения сети
- способ управления сетью
Конфигурация сети может быть или децентрализованной (когда кабель «обегает» каждую станцию в сети), или централизованной (когда каждая станция физически подключается к некоторому центральному устройству, распределяющему фреймы и пакеты между станциями). Примером централизованной конфигурации является звезда с рабочими станциями, располагающимися на концах ее лучей. Децентрализованная конфигурация похожа на цепочку альпинистов, где каждый имеет свое положение в связке, а все вместе соединены одной веревкой. Логические характеристики топологии сети определяют маршрут, проходимый пакетом при передаче по сети.
При выборке топологии нужно учитывать, чтобы она обеспечивала надежную и эффективную работу сети, удобное управление потоками сетевых данных. Желательно также, чтобы сеть по стоимости создания и сопровождения получилась недорогой, но в то же время оставались возможности для ее дальнейшего расширения и, желательно, для перехода к более высокоскоростным технологиям связи. Это непростая задача! Чтобы ее решить, необходимо знать, какие бывают сетевые топологии.
Многозначность понятия топологии
Топология сети указывает не только на физическое расположение компьютеров, как часто считают, но, что гораздо важнее, на характер связей между ними, особенности распространения информации, сигналов по сети. Именно характер связей определяет степень отказоустойчивости сети, требуемую сложность сетевой аппаратуры, наиболее подходящий метод управления обменом, возможные типы сред передачи (каналов связи), допустимый размер сети (длина линий связи и количество абонентов) необходимость электрического согласования и многое другое.
Более того, физическое расположение компьютеров, соединяемых сетью, почти не влияет на выбор топологии. Как бы ни были расположены компьютеры, их можно соединить с помощью любой заранее выбранной топологии (Рисунок 12).
В том случае, если соединяемые компьютеры расположены по контуру круга, они могут соединяться, как звезда или шина. Когда компьютеры расположены вокруг некоего центра, их допустимо соединить с помощью топологий шина или кольцо. Наконец когда компьютеры расположены в одну линию, они могут соединяться звездой или кольцом. Другое дело, какова будет требуемая длина кабеля.
Строго говоря, в литературе при упоминании о топологии сети, авторы могут подразумевать четыре совершенно разные понятия, относящиеся к различным уровням сетевой архитектуры:
физическая топология (географическая схема расположения компьютеров и прокладки кабелей). В этом смысле, например, пассивная звезда ничем не отличается от активной, поэтому ее нередко называют просто звездой.
логическая топология (структура связей, характер распространения сигналов по сети). Это наиболее правильное определение топологии.
топология управления обменом (принцип и последовательность передачи права на захват сети между отдельными компьютерами).
информационная топология (направление потоков информации, передаваемой по сети).
Например, сеть с физической и логической топологией шина может в качестве метода управления использовать эстафетную передачу права захвата сети (быть в этом смысле кольцом) и одновременно передавать всю информацию через выделенный компьютер (быть в этом смысле звездой). Или сеть с логической топологией шина может иметь физическую топологию звезда (пассивная) или дерево (пассивное).
Сеть с любой физической топологией, логической топологией, топологией управления обменом может считаться звездой в смысле информационной топологии, если она построена на основе одного сервера и нескольких клиентов, общающихся только с этим сервером. В данном случае справедливы все рассуждения о низкой отказоустойчивости сети к неполадкам центра (сервера). Точно так же любая сеть может быть названа шиной в информационном смысле, если она построена из компьютеров, являющихся одновременно как серверами, так и клиентами. Такая сеть будет мало чувствительна к отказам отдельных компьютеров.
Ниже представлены наглядные схемы топологий:
Источник
Сетевая топология способ описания конфигурации сети схема расположения
Типология – это схема соединения каналами связи компьютеров или узлов сети между собой.
Сетевая топология может быть :
— физической — описывает реальное расположение и связи между узлами сети.
— логической — описывает хождение сигнала в рамках физической топологии.
— информационной — описывает направление потоков информации, передаваемых по сети.
— управления обменом — это принцип передачи права на пользование сетью.
Существует множество способов соединения сетевых устройств. Выделяют следующие топологии:
— полносвязная
— ячеистая
— общая шина
— звезда
— кольцо
— снежинка
Технология доступа в сетях этой топологии реализуется методом передачи маркера. Маркер – это пакет, снабженный специальной последовательностью бит (его можно сравнить с конвертом для письма). Он последовательно предается по кольцу от компьютера к компьютеру в одном направлении. Каждый узел ретранслирует передаваемый маркер. Компьютер может передать свои данные, если он получил пустой маркер. Маркер с пакетом передается, пока не обнаружится компьютер, которому предназначен пакет. В этом компьютере данные принимаются, но маркер движется дальше и возвращается к отправителю.
После того, как отправивший пакет компьютер убедится, что пакет доставлен адресату, маркер освобождается.
Недостаток: громоздкий и неэффективный вариант, т.к. каждый компьютер должен иметь большое кол-во коммуникационных портов.
3) Общая шина, представляет собой общий кабель (называемый шина или магистраль), к которому подсоединены все рабочие станции. На концах кабеля находятся терминаторы, для предотвращения отражения сигнала.
На каждой линии связи, как и в случае звезды, работает только один передатчик и один приемник. Это позволяет отказаться от применения внешних терминаторов. Работа в сети кольца заключается в том, что каждый компьютер ретранслирует (возобновляет) сигнал, то есть выступает в роли повторителя, потому затухание сигнала во всем кольце не имеет никакого значения, важно только затухание между соседними компьютерами кольца. Четко выделенного центра в этом случае нет, все компьютеры могут быть одинаковыми. Однако достаточно часто в кольце выделяется специальный абонент, который управляет обменом или контролирует обмен. Понятно, что наличие такого управляющего абонента снижает надежность сети, потому что выход его из строя сразу же парализует весь обмен.
Компьютеры в кольце не являются полностью равноправными (в отличие, например, от шинной топологии). Одни из них обязательно получают информацию от компьютера, который ведет передачу в этот момент, раньше, а другие — позже. Именно на этой особенности топологии и строятся методы управления обменом по сети, специально рассчитанные на «кольцо». В этих методах право на следующую передачу (или, как еще говорят, на захват сети) переходит последовательно к следующему по кругу компьютеру. Подключение новых абонентов в «кольцо» обычно совсем безболезненно, хотя и требует обязательной остановки работы всей сети на время подключения. Как и в случае топологии «шина», максимальное количество абонентов в кольце может быть достаточно большое (1000 и больше). Кольцевая топология обычно является самой стойкой к перегрузкам, она обеспечивает уверенную работу с самыми большими потоками переданной по сети информации, потому что в ней, как правило, нет конфликтов (в отличие от шины), а также отсутствует центральный абонент (в отличие от звезды). В кольце, в отличие от других топологий (звезда, шина), не используется конкурентный метод посылки данных, компьютер в сети получает данные от стоящего предыдущим в списке адресатов и перенаправляет их далее, если они адресованы не ему. Список адресатов генерируется компьютером, являющимся генератором маркера. Сетевой модуль генерирует маркерный сигнал (обычно порядка 2—10 байт во избежание затухания) и передает его следующей системе (иногда по возрастанию MAC-адреса). Следующая система, приняв сигнал, не анализирует его, а просто передает дальше. Это так называемый нулевой цикл. Последующий алгоритм работы таков — пакет данных GRE, передаваемый отправителем адресату начинает следовать по пути, проложенному маркером. Пакет передаётся до тех пор, пока не доберётся до получателя.
Сравнение с другими топологиями.
Достоинства:
— Простота установки;
— Практически полное отсутствие дополнительного оборудования;
— Возможность устойчивой работы без существенного падения скорости передачи данных при интенсивной загрузке сети, поскольку использование маркера исключает возможность возникновения коллизий.
Недостатки:
— Выход из строя одной рабочей станции, и другие неполадки (обрыв кабеля), отражаются на работоспособности всей сети;
— Сложность конфигурирования и настройки;
— Сложность поиска неисправностей.
— Необходимость иметь две сетевые платы, на каждой рабочей станции.
Источник