- Сетевая топология определяется способом структурой аппаратного обеспечения
- 5.3.Аппаратное обеспечение и топология сети
- 5.4.Протоколы глобальной сети Интернет
- Сетевая топология определяется способом структурой аппаратного обеспечения
- Взаимодействие компьютеров
- Передача сигнала
- Отражение сигнала
- Звезда
- Кольцо
- Передача маркера
- Линейная сеть
Сетевая топология определяется способом структурой аппаратного обеспечения
Образовательные тесты по информатике тема — Компьютерные сети с ответами
Правильный вариант ответа отмечен знаком +
1) Предоставляющий свои ресурсы пользователям сети компьютер – это:
2) Центральная машина сети называется:
3) Обобщенная геометрическая характеристика компьютерной сети – это:
— Удаленность компьютеров сети
4) Глобальной компьютерной сетью мирового уровня является:
5) Основными видами компьютерных сетей являются сети:
+ локальные, глобальные, региональные
— клиентские, корпоративные, международные
— социальные, развлекательные, бизнес-ориентированные
6) Протокол компьютерной сети — совокупность:
— Электронный журнал для протоколирования действий пользователей сети
— Технических характеристик трафика сети
+ Правил, регламентирующих прием-передачу, активацию данных в сети
7) Основным назначением компьютерной сети является:
+ Совместное удаленное использование ресурсов сети сетевыми пользователям
— Физическое соединение всех компьютеров сети
— Совместное решение распределенной задачи пользователями сети
8) Узловым в компьютерной сети служит сервер:
— Располагаемый в здании главного офиса сетевой компании
+ Связывающие остальные компьютеры сети
— На котором располагается база сетевых данных
9) К основным компонентам компьютерных сетей можно отнести все перечисленное:
+ Сервер, клиентскую машину, операционную систему, линии
— Офисный пакет, точку доступа к сети, телефонный кабель, хостинг-компанию
— Пользователей сети, сайты, веб-магазины, хостинг-компанию
тест 10) Первые компьютерные сети:
11) Передачу всех данных в компьютерных сетях реализуют с помощью:
12) Обмен информацией между компьютерными сетями осуществляют всегда посредством:
+ Независимых небольших наборов данных (пакетов)
— Побайтной независимой передачи
— Очередности по длительности расстояния между узлами
13) Каналами связи в компьютерных сетях являются все перечисленное в списке:
— Спутниковая связь, солнечные лучи, магнитные поля, телефон
+ Спутниковая связь, оптоволоконные кабели, телефонные сети, радиорелейная связь
— Спутниковая связь, инфракрасные лучи, ультрафиолет, контактно-релейная связь
14) Компьютерная сеть – совокупность:
— Компьютеров, пользователей, компаний и их ресурсов
+ Компьютеров, протоколов, сетевых ресурсов
— Компьютеров, серверов, узлов
15) В компьютерной сети рабочая станция – компьютер:
— Работающий в данный момент
— На станции приема спутниковых данных
16) Указать назначение компьютерных сетей:
— Обеспечивать одновременный доступ всех пользователей сети к сетевым ресурсам
— Замещать выходящие из строя компьютеры другими компьютерами сети
+ Использовать ресурсы соединяемых компьютеров сети, усиливая возможности каждого
17) Составляющие компьютерной сети:
+ Серверы, протоколы, клиентские машины, каналы связи
— Клиентские компьютеры, смартфоны, планшеты, Wi-Fi
— E-mail, TCP, IP, LAN
18) Локальная компьютерная сеть – сеть, состоящая из компьютеров, связываемых в рамках:
+ одного учреждения (его территориального объединения)
— одной города, района
19) Сетевое приложение – приложение:
— Устанавливаемое для работы пользователем сети на свой компьютер
+ каждая часть которого выполнима на каждом сетевом компьютере
тест_20) Наиболее полно, правильно перечислены характеристики компьютерной сети в списке:
— Совокупность однотипных (по архитектуре) соединяемых компьютеров
+ Компьютеры, соединенные общими программными, сетевыми ресурсами, протоколами
— Компьютеры каждый из которых должен соединяться и взаимодействовать с другим
21) Сеть, разрабатываемая в рамках одного учреждения, предприятия – сеть:
22) Маршрутизатор – устройство, соединяющее различные:
— По архитектуре компьютеры
— маршруты передачи адресов для e-mail
23) Локальную компьютерную сеть обозначают:
24) Глобальную компьютерную сеть обозначают:
25) Соединение нескольких сетей дает:
26) Основной (неделимой) единицей сетевого информационного обмена является:
27) Часть пакета, где указаны адрес отправителя, порядок сборки блоков (конвертов) данных на компьютере получателя называется:
28) Передача-прием данных в компьютерной сети может происходить
+ Как последовательно, так и параллельно
29) Компьютерная сеть должна обязательно иметь:
— Более сотни компьютеров
— Спутниковый выход в WWW
тест-30) Скорость передачи данных в компьютерных сетях измеряют обычно в:
31) Сеть, где нет специально выделяемого сервера называется:
— Не привязанной к серверу
32) Выделенным называется сервер:
+ Функционирующий лишь как сервер
— На котором размещается сетевая информация
— Отвечающий за безопасность ресурсов, клиентов
33) Сервер, управляющий клиентским доступом к файлам называется:
34) Сервер для реализации прикладных клиентских приложений называется:
35) Серверы для передачи-приема e-mail называют:
36) Поток сетевых сообщений определяется:
37) Правильно утверждение «Звезда»
— Топологию «Звезда» можно собрать из нескольких топологий «Кольцо»
+ Топологию «Дерево» можно собрать из нескольких топологий «Звезда»
— Топологию «Шина» можно собрать из нескольких топологий «Дерево»
38) Сетевая топология определяется способом, структурой:
Источник
5.3.Аппаратное обеспечение и топология сети
Для передачи информации по каналам связи необходимо преобразовывать компьютерные сигналы в сигналы физических сред, то есть сделать возможным их передачу по электрическим, оптическим, телефонным путям. Например, при передаче информации по оптоволоконному кабелю компьютерные данные будут преобразованы в оптические сигналы. Для этого используют специальные технические устройства – сетевые адаптеры.
Сетевые адаптеры – технические устройства, выполняющие функции сопряжения компьютеров с каналами связи. Сетевые адаптеры должны соответствовать каналам связи. Для каждого вида канала связи нужен свой тип сетевого адаптера. Адаптер вставляют в свободное гнездо материнской платы компьютера и соединяют кабелем с сетевым адаптером другого компьютера. На сетевых картах выставляются адреса компьютеров в сети, без чего невозможна передача. Когда информация циркулирует по сети, каждый сетевой компьютер отбирает из общего потока лишь те данные, которые предназначены для него.
Также, можно отметить еще одно устройство, относящееся к аппаратному обеспечению глобальных компьютерных сетей – это модем. Модем – это устройство, производящее модуляцию (преобразование цифровых сигналов в аналоговые) и демодуляцию (преобразование аналоговых сигналов в цифровые).
Что же касается топологии глобальной компьютерной сети, то глобальная сеть охватывает значительную географическую территорию: область, страну или даже целый континент. Она объединяет компьютеры, которые называются хостами. Хосты соединяются коммуникационными подсетями. Задачей подсети является передача сообщений от хоста к хосту и, таким образом в глобальных сетях коммуникативный аспект отдален от прикладного, что значительно увеличивает структуризацию сети, а следовательно, упрощает ее разработку и обслуживание.
5.4.Протоколы глобальной сети Интернет
Сеть Internet отличается от других сетей своими протоколами и в первую очередь протоколами TCP/IP.
Протокол — это набор правил, определяющий характер взаимодействия пользователей, последовательность выполнения ими действий при обмене информацией. Термин TCP/IP означает все, что связано с протоколами взаимодействия между компьютерами в сети. Свое название протокол TCP/IP получил от двух типов протоколов связи. Первый тип — это Transmission Control Protocol (TCP). Второй тип — это Internet Protocol (IP). В сети Internet используется большое число и других протоколов, однако эту сеть часто называют TCP/IP сетью, так как эти два протокола являются важнейшими. В Internet существует семь уровней взаимодействия между компьютерами: физический, логический, сетевой, транспортный, уровень сеансов связи, представительский и прикладной. Каждому уровню соответствует набор соответствующих правил взаимодействия — свой набор протоколов.
Протоколы физического уровня определяют вид и характеристики линий связи между компьютерами. В Internet используются практически все известные в настоящее время способы связи, начиная от простого провода и до волоконно-оптических линий связи.
Протоколы логического уровня разрабатываются для каждого типа линий связи и регламентируют управление передачей информации по каналу.
Протоколы сетевого уровня отвечают за передачу данных между устройствами в разных сетях, осуществляют маршрутизацию пакетов в сети.
Протоколы транспортного уровня управляют передачей данных из одной программы в другую.
Протоколы уровня сеансов связи обеспечивают установку, поддержание и уничтожение соответствующих каналов.
Источник
Сетевая топология определяется способом структурой аппаратного обеспечения
Термин «топология», или «топология сети», характеризует физическое расположение компьютеров, кабелей и других компонентов сети. Топология — это стандартный термин, который используется профессионалами при описании основной компоновки сети. Если Вы поймете, как используются различные топологии, Вы сумеете понять, какими возможностями обладают различные типы сетей. Чтобы совместно использовать ресурсы или выполнять другие сетевые задачи, компьютеры должны быть подключены друг к другу. Для этой цели в большинстве сетей применяется кабель. Однако просто подключить компьютер к кабелю, соединяющему другие компьютеры, не достаточно. Различные типы кабелей в сочетании с различными сетевыми платами, сетевыми операционными системами и другими компонентами требуют и различного взаимного расположения компьютеров. Каждая топология сети налагает ряд условий. Например, она может диктовать не только тип кабеля, но и способ его прокладки. Топология может также определять способ взаимодействия компьютеров в сети. Различным видам топологий соответствуют различные методы взаимодействия, и эти методы оказывают большое влияние на сеть.
Базовые топологии
Все сети строятся на основе трех базовых топологий:
- шина (bus);
- звезда (star);
- кольцо (ring).
Топологию «шина» часто называют «линейной шиной» (linear bus). Данная топология относится к наиболее простым и широко распространенным топологиям. В ней используется один кабель, именуемый магистралью или сегментом, вдоль которого подключены все компьютеры сети.
Взаимодействие компьютеров
В сети с топологией «шина» компьютеры адресуют данные конкретному компьютеру, передавая их по кабелю в виде электрических сигналов. Чтобы понять процесс взаимодействия компьютеров по шине, Вы должны уяснить следующие понятия:
Передача сигнала
Данные в виде электрических сигналов передаются всем компьютерам сети; однако информацию принимает только тот, адрес которого соответствует адресу получателя, ‘ зашифрованному в этих сигналах. Причем в каждый момент времени только один компьютер может вести передачу.Так как данные в сеть передаются лишь одним компьютером, ее производительность зависит от количества компьютеров, подключенных к шине. Чем их больше, т.е. чем больше компьютеров, ожидающих передачи данных, тем медленнее сеть. Однако вывести прямую зависимость между пропускной способностью сети и количеством компьютеров в ней нельзя. Ибо, кроме числа компьютеров, на быстродействие сети влияет множество факторов, в том числе:
Шина — пассивная топология. Это значит, что компьютеры только «слушают» передаваемые по сети данные, но не перемещают их от отправителя к получателю. Поэтому, если один из компьютеров выйдет из строя, это не скажется на работе остальных. В активных топологиях компьютеры регенерируют сигналы и передают их по сети.
Отражение сигнала
Данные, или электрические сигналы, распространяются по всей сети — от одного конца кабеля к другому. Если не предпринимать никаких специальных действий, сигнал, достигая конца кабеля, будет отражаться и не позволит другим компьютерам осуществлять передачу. Поэтому, после того как данные достигнут адресата, электрические сигналы необходимо погасить.
Звезда
При топологии «звезда» все компьютеры с помощью сегментов кабеля подключаются к центральному компоненту, именуемому концентратором (hub). Сигналы от передающего компьютера поступают через концентратор ко всем остальным. Эта топология возникла на заре вычислительной техники, когда компьютеры были подключены к центральному, главному, компьютеру.
В сетях с топологией «звезда» подключение кабеля и управление конфигурацией сети централизованны. Но есть и недостаток: так как все компьютеры подключены к центральной точке, для больших сетей значительно увеличивается расход кабеля. К тому же, если центральный компонент выйдет из строя, нарушится работа всей сети. А если выйдет из строя только один компьютер (или кабель, соединяющий его с концентратором), то лишь этот компьютер не сможет передавать или принимать данные по сети. На остальные компьютеры в сети это не повлияет.
Кольцо
При топологии «кольцо» компьютеры подключаются к кабелю, замкнутому в кольцо. Поэтому у кабеля просто не может быть свободного конца, к которому надо подключать терминатор. Сигналы передаются по кольцу в одном направлении и проходят через каждый компьютер. В отличие от пассивной топологии «шина», здесь каждый компьютер выступает в роли репитера, усиливая сигналы и передавая их следующему компьютеру. Поэтому, если выйдет из строя один компьютер, прекращает функционировать вся сеть.
Передача маркера
Один из принципов передачи данных в кольцевой сети носит название передачи маркера. Суть его такова. Маркер последовательно, от одного компьютера к другому, передается до тех пор, пока его не получит тот, который «хочет» передать данные. Передающий компьютер изменяет маркер, помещает электронный адрес в данные и посылает их по кольцу.
Данные проходят через каждый компьютер, пока не окажутся у того, чей адрес совпадает с адресом получателя, указанным в данных. После этого принимающий компьютер посылает передающему сообщение, где подтверждает факт приёма данных. Получим подтверждение, передающий компьютер создаёт новый маркер и возвращает его в сеть. На первый взгляд кажется, что передача маркера отнимает много времени, однако на самом деле маркер передвигается приктически со скоростью света. В кольце диаметром 200 м маркер может циркулировать с частотой 10 000 оборотов в секунду.
Линейная сеть
Согласно общепринятому в науке принципу, если более сложная модель не даёт лучших результатов, чем более простая, то из них следует предпочесть вторую. В терминах аппроксимации отображений самой простой моделью будет линейная, в которой подгоночная функция определяется гиперплоскостью . В задаче классификации гиперплоскость размещается таким образом, чтобы она разделяла собой два класса (линейная дискриминантная функция); в задаче регрессии гиперплоскость должна проходить через заданные точки. Линейная модель обычно записывается с помощью матрицы NxN и вектора смещения размера N.
На языке нейронных сетей линейная модель представляется сетью без промежуточных слоёв, которая в выходном слое содержит только линейные элементы (то есть элементы с линейной функцией активации). Веса соответствуют элементам матрицы, а пороги — компонентам вектора смещения. Во время работы сеть фактически умножает вектор входов на матрицу весов , а затем к полученному вектору прибавляет вектор смещения.
В пакете ST Neural Networks имеется возможность создать линейную сеть и обучить её с помощью стандартного алгоритма линейной оптимизации, основанного на псевдообратных матрицах ( SVD ) (Golub and Kahan, 1965). Разумеется, метод линейной оптимизации реализован также в модуле Множественная регрессия системы STATISTICA; однако, линейные сети пакета ST Neural Networks имеют то преимущество, что здесь возможно в единой среде сравнивать такие сети с «настоящими» нейронными сетями .
Линейная сеть является хорошей точкой отсчёта для оценки качества построенных нейронных сетей . Может оказаться так, что задачу, считавшуюся очень сложной, можно успешно решить не только нейронной сетью, но и простым линейным методом. Если же в задаче не так много обучающих данных, то, вероятно, просто нет оснований использовать более сложные модели.
Смешанные топологии
В большинстве случаев крупные сети имеют смешанную (гибридную) топологию. В этих случаях используется различное комбинирование элементов типовых топологий в зависимости от поставленных задач. Примеры смешанных топологий — «звезда-звезда», «звезда-шина».
Достоинства и недостатки сетей смешанной топологии зависят от того, какие базовые топологии были положены в их основу.
Часто смешанная топология является результатом постепенной модернизации сети, когда оборудование меняется частями, а не сразу.
Источник