- Серобактерии: питание, являются ли гетеротрофами, продуцент или редуцент
- История открытия
- Что собой представляют серобактерии?
- Микроорганизмы, питающиеся при помощи фотосинтеза
- Хемосинтез
- Среда обитания
- Особенности
- Значение в природе
- СЕРОБАКТЕ́РИИ
- Питание бактерий
- Содержание:
- Способы поступления питательных веществ
- Гетеротрофные бактерии: культура Erwinia amylovora
- Источники углерода
- Источники энергии
- Хемоорганотрофные бактерии
- Природа доноров электронов
- Источники углерода, энергии и доноров электронов
Серобактерии: питание, являются ли гетеротрофами, продуцент или редуцент
Давно известно, что в сероводородных источниках и других водоемах, содержащих сероводород, как правило, встречаются в большом количестве неокрашенные микроорганизмы, в клетках которых обнаруяшваются капли серы.
В местах, где концентрация сероводорода сравнительно невелика (меньше 50 мг/л), такие микроорганизмы, получившие название бесцветных серобактерий, часто образуют массовые скопления в виде пленок, белых налетов и других обрастаний.
Серобактерии — тиобактерии, микроорганизмы, окисляющие восстановленные соединения серы.
История открытия
С. Н. Виноградский (1887) доказал, что сера, откладываемая в клетках одного из типичных представителей серобактерий, а именно Beggiatoa, образуется из сероводорода и может окисляться этим микроорганизмом до серной кислоты. Для исследований им был применен оригинальный метод микрокультуры, который позволяет менять среду и проводить наблюдения за живым объектом в течение длительного времени. Результаты опытов с Beggiatoa, как уже указывалось выше, послужили основой для развития С. Н. Виноградским концепции о существовании микроорганизмов, способных к хемоавтотрофному образу жизни. Однако, как это ни странно, такая возможность для большинства бесцветных серобактерий до сих пор не выяснена.
Объясняется это тем, что большинство относимых к ним микроорганизмов не удалось еще культивировать в лабораторных условиях в ви де чистых культур. Поэтому четких выводов относительно их физиологии и биохимических свойств сделать нельзя. Но обычно такие микроорганизмы рассматривают в числе бактерий, окисляющих восстановленные соединения серы.
Что собой представляют серобактерии?
В группу серобактерий включаются самые разнообразные типы прокариотов. Прокариоты — одноклеточные организмы, не обладающие четко оформленного ядра, не имеющие его оболочки. Серобактерии для своей жизнедеятельности окисляют соединения сероводорода до элементарной серы, а также сульфиды, тиосульфаты, молекулярную серу.
Эти микроорганизмы относятся к автотрофам (продуцентам), синтезирующим из неорганических веществ органические:
- Purple bacteria (пурпурные),
- Chlorobiaceae (зеленые серобактерии),
- синезеленые водоросли (Cyanobacteria),
- бесцветные серобактерии.
Первичные продуценты – главное звено в мировой цепочке питания. Организмы, обитающие без кислорода и света под водой, химическим способом синтезируют органические соединения, которые служат пищей для гетеротрофов – консументов (не умеющих осуществлять питание по способу продуцентов). К гетеротрофам относят паразитов, хищных и травоядных животных, растения.
Существуют симбиозы микробов с моллюсками, трубчатыми червями, морскими ежами, живущих в воздушной зоне ила (минеральной и органической смеси на дне водоемов).
Но не все автотрофы являются продуцентами. Некоторые из них сами производят органические вещества и сами же их поглощают. Такие организмы считаются редуцентами (превращают отмершие останки на дне водоемов в неорганические вещества) и продуцентами одновременно. Автотрофы разделяются на фотосинтезирующие и образующие энергию способом хемосинтеза.
Микроорганизмы, питающиеся при помощи фотосинтеза
Серобактерий относят к фотосинтезирующим организмам, которые используют солнечный свет в качестве источника энергии. Этот способ называется фотосинтезом. Фотосинтезирующими являются некоторые многоклеточные водоросли, археи, обитающие в водоемах.
Пурпурные серобактерии относятся к фотосинтезирующему типу. Их насчитывается более чем 50 видов. Они грамположительные, существуют способные к движению при помощи жгутиков типы и недвижимые. Размножаются путем деления. Обитают в бескислородной среде у поверхности пресной и соленой воды. Используют в качестве источника углерода молекулярную серу, которая имеет свойство накапливаться в периплазматическом пространстве (полость, состоящая из дополнительной мембраны в клеточной стенке микроорганизма).
Синезеленые водоросли, или цианобактерии, также фотосинтезирующие, грамотрицательные, способны выделять кислород. Они являются потомками наиболее древних микробов на земле. Зарождение стоматолитов – продуктов их жизнедеятельности, найденных в наши дни, – датируется 2,5-3,5 млрд. лет назад.
Зеленые серобактерии не окрашиваются по Граму, имеют палочковидные или в форме яйца клетки, могут накапливать гликоген (запасы углеводов), в основном неподвижны.
Зеленые серобактерии имеют полость, наполненную газом, позволяющую им погружаться на разную глубину (газовые вакуоли).
Источником углерода является углекислота. Зеленые серобактерии практически не образуют колоний, растут под пурпурными колониями. Они были обнаружены в водах гидротермальных источников на глубине более 2000 метров в Мексике. Существует две группы: способные существовать на большой глубине без света и требующие освещения зеленые серобактерии.
Хемосинтез
Микроорганизмы, получающие энергию в результате переработки неорганических соединений (хемосинтез), называются хемотрофами. К данному типу относятся окисляющие аммиак нитрификаторы (Nitrobacteraceae), перерабатывающие сероводород серо- и окисляющие железо железобактерии (Geobacter).
Хемосинтез впервые был открыт С.Н. Виноградским в процессе изучения нитчатых серобактерий. Ученым также были открыты железобактерии, отличные от серобактерий тем, что используют способ окисления двухвалентного железа до трехвалентного. Вследствие этого на дне рек, морей, болот образовались марганцевые и железные руды.
Бесцветные серобактерии, также осуществляющие хемосинтез, подразделяются на два типа:
- одноклеточные – в основном неподвижные (род Macromonas и Achomatium);
- нитчатые серобактерии (Thiothrix), способные к скольжению.
Оба вида умеют откладывать серу.
Бесцветные серобактерии обитают в морях, океанах, озерах. До конца не изучена их роль в природе, потому что так и не удалось выделить чистую культуру. Исследования, проводимые на основе изучения природного материала, показали, что они играют немалую роль в окислении серных соединений на границе воздушной и безвоздушной среды водоемов.
Серобактерии являются важными участниками процесса очистки водоемов от неорганических загрязнений. Бактерии, содержащиеся в иле, применяются для очистки от сероводорода сточных вод, тем самым препятствуя его утечке в окружающую среду.
Они обеспечивают не только круговорот серы в природе. Щелочная сера, производимая этими микроорганизмами, способна стать причиной коррозии канализационных труб, порчи бетонных сооружений, зданий, шахтных и других горнодобывающих конструкций.
Работаю врачом ветеринарной медицины. Увлекаюсь бальными танцами, спортом и йогой. В приоритет ставлю личностное развитие и освоение духовных практик. Любимые темы: ветеринария, биология, строительство, ремонт, путешествия. Табу: юриспруденция, политика, IT-технологии и компьютерные игры.
Среда обитания
Микроорганизмы, относящиеся к бесцветным серобактериям, встречаются и в пресных и в соленых водоемах. Некоторые из них хорошо растут при низкой температуре, другие (Thiospirillum pistiense) развиваются в термальных серных источниках при температуре более 50 °С. Бесцветные серобактерии аэробы.
Подвижные формы обладают хемотаксисом и могут перемещаться в места с оптимальным содержанием кислорода и сероводорода. Еще С. Н. Виноградский отметил (1887-1889), что бесцветные серобактерии могут расти в воде, содержащей очень небольшие количества органических веществ, и предполагал поэтому, что они способны усваивать углекислоту. Однако на минеральной среде, содержащей сероводород, удалось выращивать пока в виде чистых культур только Thiovulum majus и некоторые штаммы Beggiatoa. Другие представители микроорганизмов, определенные как Beggiatoa, оказались способными развиваться только на органических средах, содержащих сенной отвар, пептон, мясной экстракт, аминокислоты или ацетат. Некоторые проявили потребность в витамине В12.
Добавление ацетата и других органических соединений также улучшало рост штаммов Beggiatoa, развивающихся на минеральных средах. При наличии ацетата в клетках отмечалось появление гранул поли-р-оксибутирата. На основании изучения физиологии разных штаммов Beggiatoa Прингсхейм считает, что среди них есть автотрофы, окисляющие сероводород и фиксирующие СО2, и есть представители, нуждающиеся в органических соединениях. Но и ряд гетеротрофных штаммов Beggiatoa в присутствии органических соединений окисляет сероводород, возможно, с получением энергии, т. е. они являются хемолитогетеротрофами. Однако биология этих микроорганизмов, а еще в большей степени других бесцветных серобактерий исследована мало. Особенно заслуживает внимания вопрос о роли сероводорода в их метаболизме.
Особенности
По морфологии, характеру движения, способу размножения и строению клеток ряд представителей бесцветных серобактерий, как многоклеточные, так и одноклеточные (Beggiatoa, Thiothrix, Thiospirillopsis, Thioploca, Achromatium) проявляют большое сходство с синезелеными водорослями. Некоторые исследователи, в частности Прингсхейм (Pringsheim, 1963), рассматривают эти микроорганизмы как бесцветные их варианты.
Аналогом Beggiatoa считают сине-зеленую водоросль Oscillatoria, Thiothrix — Rivularia, Thiospirillopsis — Spirulina, a Achromatium похож на Synechococcus. Поскольку сине-зеленые водоросли сейчас причисляют к бактериям, то их сближение с бесцветными серобактериями становится все более обоснованным. Следует также отметить, что у некоторых сине-зеленых водорослей обнаружена способность откладывать в клетках серу, хотя один этот признак мало что дает для систематики микроорганизмов.
Значение в природе
Микроорганизмы, окисляющие неорганические соединения серы, играют весьма существенную роль в процессах их превращения в природе (рис. 142). Особенно важное значение в круговороте серы, видимо, имеют тионовые бактерии, широко распространенные в различных водоемах, почве и в разрушающихся горных породах.
В результате деятельности этих микроорганизмов, а также бесцветных и окрашенных серобактерий происходит окисление значительной части сероводорода и других соединений серы в водоемах. Причем в некоторых случаях имеет место отложение значительного количества серы. Активное окисление серы тионовыми бактериями в почве нашло практическое применение. Для уменьшения щелочности почвы вносят элементарную серу, которая быстро окисляется этими микроорганизмами с образованием серной кислоты.
Так называемое сернокислое выветривание горных пород также обусловлено деятельностью тионовых бактерий и является результатом образования ими серной кислоты. Такова же нередко причина порчи некоторых каменных и металлических сооружений.
Есть основания считать, что наряду с десульфатирующими бактериями, которые восстанавливают сульфаты до сероводорода, тионовые бактерии участвовали в какой-то степени в образовании некоторых месторождений самородной серы, окисляя сульфиды до молекулярной серы. Но эти же микроорганизмы могут являть ся основной причиной быстрого разрушения серных руд, проводя окисление до конца, т. е. до серной кислоты. Такие процессы, как показано С. И. Кузнецовым и его сотрудниками, нередко имеют место при разработке серных месторождений, когда создаются аэробные условия.
Таким образом, деятельность микроорганизмов, окисляющих серу и различные ее соединения, по своим результатам достаточно разнообразна.
Источник
СЕРОБАКТЕ́РИИ
В книжной версии
Том 30. Москва, 2015, стр. 94
Скопировать библиографическую ссылку:
СЕРОБАКТЕ́РИИ, бактерии, окисляющие сероводород и др. неорганич. соединения серы, а также молекулярную серу. К С. относятся мн. фотоавтотрофные пурпурные и зелёные бактерии, для которых неорганич. соединения серы служат донорами электронов при фотосинтезе. Есть также бесцветные хемотрофные бактерии, использующие соединения серы как источники энергии и доноры электронов для ассимиляции диоксида углерода и роста в автотрофных условиях. К их числу относятся большинство видов родов Thiobacillus , Thiomicrospira , Sulfolobus и некоторые другие. Как и фототрофные бактерии, они обычно окисляют сероводород и др. соединения серы до серной кислоты. Однако многие С., хотя и окисляют сероводород с накоплением в клетках серы, нуждаются для роста в готовых органич. веществах. К ним относится большинство нитчатых скользящих бактерий родов Beggiatoa , Thiothrix , Thioploca , а также одноклеточные формы родов Achromatium , Macromonas , Thiovulum , Aquaspirillum . С. широко распространены в воде и грунтах морей, озёр, серных источников и др. водоёмов, содержащих сероводород, встречаются в почве, месторождениях серы и сульфидных минералов. Нередко образуют массовые скопления. Активно участвуют в круговороте серы в природе, предотвращают накопление в воде токсичного сероводорода. Некоторые С. используют для выщелачивания металлов из руд. В результате образования серной кислоты С. могут быть причиной разрушения каменных и бетонных сооружений, коррозии металлич. оборудования в шахтах и т. д.
Источник
Питание бактерий
Питание бактерий – это процесс поглощения и усвоения бактериальной клеткой пластического материала и энергии в результате преобразовательных реакций [4] .
Питание является неотъемлемой функцией каждого живого организма. В процессе питания организм получает вещества, идущие на синтез клеточных структур и служащие источником энергии для всех процессов жизнедеятельности. Для питания микроорганизмов необходимы те же элементы, что и для животных, и растений. Первоочередные элементы питания – углерод, азот, кислород, водород, являющиеся основой всех органических веществ, которые входят в состав живой клетки как прокариоритеческих так и эукариоэтических организмов [5] .
Типы питания бактерий чрезвычайно разнообразны. Различаются они в зависимости от способа поступления питательных веществ бактериальной клетки, источников углерода и азота, способа получения энергии, природы доноров электронов [4] .
Содержание:
Способы поступления питательных веществ
По способам поступления питательных веществ бактерии подразделяются на:
- голофиты (греч. holos – полноценный и греч. phyticos – относящийся к растениям) – бактерии неспособные выделять в окружающую среду ферменты, расщепляющие субстраты, потребляют вещества только в растворенном, молекулярном виде;
- голозои (греч. holos – полноценный и греч. zoikos – относящийся к животным) – бактерии, обладающие комплексом ферментов, обеспечивающие внешнее питание – расщепление субстратов до молекул вне бактериальной клетки, после чего молекулы питательных веществ транспортируются внутрь бактерии[4] .
Гетеротрофные бактерии: культура Erwinia amylovora
Источники углерода
По источникам углерода различают:
- автотрофы (греч. autos– сам, trophe – пища) – бактерии, использующие в качестве источника углерода углекислый газ (CO2), из которого осуществляют синтез всех углеродосодержащих веществ;
- гетеротрофы (греч.geteros– другой, trophe– пища) – бактерии, использующие в качестве источника углерода различные органические вещества в молекулярной форме (многоатомные спирты, углеводы, жирные кислоты, аминокислоты) [4] .
Наибольшая степень гетеротрофности отмечается у прокариот, живущих только внутри других живых клеток, в частности хламидий и риккетсий [4] .
Источники энергии
В зависимости от используемых источников энергии бактерии подразделяют на два типа:
- фототрофы – бактерии способные использовать солнечную энергию;
- хемотрофы – бактерии, получающие энергию при окислительно-восстановительных реакциях [4] .
Хемоорганотрофные бактерии
Pectobacterium carotovorum ssp. carotovorum вытекают из тканей капусты [6] .
Природа доноров электронов
- литотрофы (греч. litos – камень) – бактерии, использующие в качестве доноров электронов неорганические вещества: водород (Н2), сероводород (Н2S), аммиак (NH3), серу (S), углекислый газ(CО2), ионы железа (Fe2+) и многие другие;
- органотрофы – бактерии, использующие в качестве донора электронов органические соединения (углеводы, аминокислоты) [4] .
В зависимости от источника энергии и природы донора электронов возможно четыре основных типа энергетического метаболизма: хемолитотрофия, хемоорганотрофия, фотолитотрофия, фотоорганотрофия. Таки образом, бактерии разделяют на:
- хемолитотрофы – бактерии, получающие энергию при окислительно-восстановительных реакциях и использующие в качестве доноров электронов неорганические вещества;
- хемоорганотрофы – бактерии, получающие энергию при окислительно-восстановительных реакциях и использующие в качестве донора электронов органические соединения;
- фотолитотрофы – бактерии, получающие энергию в результате фотосинтеза (солнечная энергия) и использующие в качестве доноров электронов неорганические вещества;
- фотоорганотрофы – бактерии, получающие энергию в результате фотосинтеза (солнечная энергия) и использующие в качестве донора электронов органические соединения [2] .
Источники углерода, энергии и доноров электронов
Каждый тип энергетического метаболизма осуществляется на базе различных биосинтетических способностей организма. Как отмечалось выше, прокариоты, прежде всего, делятся на автрофов и гетеротрофов. В последствие, те же микроорганизмы распределяются ещё по группам: фототрофы, хемотрофы, литотрофы, органотрофы [3] .
Следовательно, выделяется восемь сочетаний типов энергетического и конструктивного метаболизма, отражающие возможности способов питания прокариот:
Способы питания прокариот представлены в Таблице 1 [2] .
Всем перечисленным способам питания соответствуют реально существующие прокариоты. Однако число видов, относящихся к той или иной группе, далеко не одинаково. Большинство видов сосредоточено в группе с хемоорганогетеротрофным типом питания. В числе фотосинтезирующих прокариот (фототрофов) подавляющее число (все цианобактерии, большинство пурпурных и зеленых серобактерий) – фотолитотрофы [2] .
Кроме указанных восьми типов питания, отмечается существование миксотрофов – организмов, способных одновременно использовать различные возможности питания. Например, способные одновременно окислять органические и минеральные соединения или использующие в качестве источника углерода, как диоксид углерода, так и органические вещества [3] .
Источник